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Abstract

Representability results play a fundamental role in optimization since
they provide characterizations of the feasible sets that arise from opti-
mization problems. In this paper we study the sets that appear in the
feasibility version of mixed binary convex quadratic optimization prob-
lems. We provide a complete characterization of the sets that can be
obtained as the projection of such feasible regions in a higher dimensional
space. In addition, we provide a complete characterization of these sets
in the special cases where (i) the feasible region is bounded, (ii) only bi-
nary extended variables are present, and (iii) only continuous variables
are present.

1 Introduction

1.1 Background

The theory of representability studies one fundamental question: Given a sys-
tem of algebraic constraints of a specified form, which subsets of Rn can be
represented in this way, possibly using additional variables? A thorough answer
to this question would be given by a complete characterization of representable
sets. Complete characterizations are useful in that they demonstrate the class
of problems which can be modeled using a fixed set of constraints.

Representability is well understood for systems of linear inequalities. It
is well known that the projection of a set described by finitely many linear
inequalities is again described by finitely many linear inequalities. It follows
from the Minkowski-Weyl Theorem that such sets decompose as the Minkowski
sum of a polytope and a polyhedral cone.
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In the case of mixed binary linear systems, i.e., using only linear constraints
and allowing both continuous and binary extended variables, a geometric char-
acterizations has been given by Jeroslow [9]. He shows that the sets that can
be represented with these constraints are precisely the sets that decompose as
a finite union of polyhedra which share a common recession cone.

In [10], Jeroslow and Lowe consider rational linear inequalities and extended
variables that can be both continuous and integer. They show that the the sets
that can be represented using these constraints are precisely the sets that can
be realized as a Minkowski sum of a finite union of rational polytopes and an
integer cone of a finite number of integral vectors.

Representability has also been studied in the case of nonlinear constraints,
but few complete characterizations have been established. In second-order cone
programming a linear functional is maximized over a set defined by linear in-
equalities and constraints of the form ||Ax + b||2 ≤ c>x + d. These constraints
are quite general and can express a variety of different constraints, including
convex quadratic inequalities. There has been a large amount of work [11, 12]
that shows different second order cone formulations for a wide range of prob-
lems. However, a complete characterization similar to the ones obtained by
Jeroslow and Lowe is missing.

In semidefinite programming, a linear functional is maximized over a set de-
fined by a linear matrix inequality, i.e., a constraint of the formA0+

∑n
i=1 xiAi � 0

where theAi are symmetric matrices. A linear matrix inequality defines a closed,
convex, semialgebraic set known as a spectrahedon. In [8], Helton and Vinnikov
introduce the notion of rigid convexity and conjecture that a set is a spectrahe-
dron if and only if it is rigidly convex. Another conjecture is stated in [7] where
Helton and Nie study which sets can be represented as the projection of a spec-
trahedon in a higher dimensional space. They conjecture that every convex
semialgebraic set can be represented as the projection of a spectrahedron.

The difficulty in establishing these conjectures, as well as forming a charac-
terization in the case of second-order cone programming, lies in the complexity
of describing the projection of semialgebraic sets.

In hopes of bridging the gap between characterization results for linear sys-
tems and similar results for nonlinear systems, we have considered in [5, 4] sets
described by linear inequalities and a single convex quadratic inequality. We
observed that a characterization of sets representable by more than one convex
quadratic inequality seems to be currently out of reach. In fact, the intersection
of two convex quadratic inequalities in R3 may project to a semialgebraic set
described by polynomials of degree four in R2.

In [5], we characterized sets described using linear constraints, a single con-
vex quadratic inequality, and allowing for both continuous and binary extended
variables, under the additional assumption that the quadratic inequality could
be factored as (w − c)>Q(w − c) ≤ γ. We call such inequalities ellipsoidal and
similarly define ellipsoidal regions to be the regions they describe. We show
that a set S ⊆ Rn can be represented with these constraints if and only if there
exist ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes Pi ⊆ Rn, i = 1, . . . , k,
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and a polyhedral cone C ⊆ Rn such that

S =

k⋃
i=1

(Ei ∩ Pi) + C.

In [4], we consider the same systems but with rational data and extended
variables that can be both continuous and integer. We show that a set S ⊆ Rn

can be represented with these constraints if and only if there exist rational
ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational polytopes Pi ⊆ Rn, i =
1, . . . , k, and integral vectors rj ∈ Zn, j = 1, . . . , t such that

S =

k⋃
i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt},

where int.cone denotes the integer cone. We note that both of these results are
direct extensions of the characterizations obtained by Jeroslow and Lowe in the
case of linear systems.

1.2 Our Contributions

In this paper, we consider sets described by linear inequalities and a single
convex quadratic inequality. We say that a region Q is a convex quadratic
region in Rn if

Q = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0}

for a positive semidefinite matrix Q ∈ Rn×n, a vector h ∈ Rn, and g ∈ R.
In general, a convex quadratic inequality cannot be factored into an ellipsoidal
inequality. This implies that the family of ellipsoidal regions is a strict subset
of the family of convex quadratic regions.

We say that a set S ⊆ Rn is mixed binary convex quadratic representable if
it can be obtained as the projection onto Rn of the solution set of a system of
the form

Dw ≤ d
w>Qw + h>w + g ≤ 0

w ∈ Rn+p × {0, 1}q,
(1)

where Q is positive semidefinite. Note that if a set S is the projection of the
solution set of a system of the form (1), but with bounded integer variables in
the place of the binary variables, then S is also the projection of the solution
set of a system of the form (1). We also note that since any convex quadratic
region is second-order cone representable, the sets that we characterize can
be represented with second-order cone constraints and mixed binary extended
variables.

There is a strong connection between mixed binary convex quadratic repre-
sentable sets and mixed binary convex quadratic programming (MBCQP). This
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class of problems has applications in many areas, including portfolio optimiza-
tion and machine learning [2, 1]. Since optimal solutions of MBCQP problems
have polynomial size (see [13, 3]), any MBCQP is polynomially equivalent to a
polynomial number of MBCQP feasibility problems. In particular, each feasibil-
ity problem is over a set of the form (1). Moreover, by linearizing the objective,
any MBCQP can be transformed to the problem of minimizing a linear function
over a set described by (1).

In this paper, we present characterization results for a number of cases of
mixed binary convex quadratic representable sets. See Figure 1 and Figure 2 for
examples of representable sets. Before proceeding with the proofs, we provide
a brief description of the statements and preview the proof techniques.

Figure 1: A bounded mixed binary
convex quadratic representable set

Figure 2: A binary convex quadratic
representable set

In Section 2, we characterize sets that are bounded mixed binary convex
quadratic representable, defined as the projection of the solution set of (1) where
Dw ≤ d describes a polytope.

Theorem 1. A set S ⊆ Rn is bounded mixed binary convex quadratic repre-
sentable if and only if there exist convex quadratic regions Qi ⊆ Rn, i = 1, . . . , k,
and polytopes Pi ⊆ Rn, i = 1, . . . , k, such that

S =

k⋃
i=1

(Qi ∩ Pi). (2)

The characterization given in Theorem 1 is quite general in the sense that
there is no restriction on the structure of the convex quadratic regions that may
appear in the union (2). This is quite similar to what holds for ellipsoidal regions
in [5], and indeed the fact that each region Qi ∩ Pi in (2) is bounded allows us
to find an extended formulation where each Qi appears as a binary slice of a
global convex quadratic region Q. In the case of ellipsoidal regions this level
of generality still holds even for unbounded regions. We will see in Section 5,
where the bounded assumption is removed, that although a decomposition of
representable sets into a union (2) holds, the convex quadratic regions that
appear must share common structure.

In Section 3, we characterize sets that are binary convex quadratic repre-
sentable, i.e., where p = 0 is fixed in (1). In order to provide a characterization
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of such sets, we need to remark on the geometry of convex quadratic sets in
more detail. We make the following observation and definition. Let Q ⊆ Rn be
a convex quadratic region defined by

Q = {x ∈ Rn | x>Qx+ h>x+ g ≤ 0},

where Q � 0. Since Q is symmetric, it is a fact of linear algebra that Rn =
range(Q) ⊕ ker(Q). Thus, we can decompose h = Qw + v where v ∈ ker(Q)
is uniquely determined. We note that Q is an ellipsoidal region if and only if
v = 0.

The pair Q, v defining Q is essential in understanding the geometry of Q.
In this vein, we say that two convex quadratic regions Q1,Q2 ⊆ Rn have the
same shape if there exists a positive semidefinite matrix Q, a vector v ∈ ker(Q),
vectors wi, and scalars gi such that

Qi = {x ∈ Rn | x>Qx+ (Qwi + v)>x+ gi ≤ 0}, i = 1, 2.

Geometrically, this means that Q1 and Q2 have the same structure, up to trans-
lation and constant term. Note that having the same shape is a transitive prop-
erty and thus it makes sense for a collection of convex quadratic regions to have
the same shape. We will establish the following result.

Theorem 2. A set S ⊆ Rn is binary convex quadratic representable if and only
if there exist convex quadratic regions Q1, . . . ,Qk ⊆ Rn with the same shape,
and polyhedra P1, . . . ,Pk ⊆ Rn with the same recession cone such that

S =

k⋃
i=1

(Qi ∩ Pi). (3)

In Section 4 we obtain an algebraic characterization of continuous convex
quadratic representable sets, i.e., where q = 0 is fixed in (1). This sort of alge-
braic description is quite different from the geometric characterizations obtained
prior to this. The combination of extended continuous variables and unbounded
regions creates a number of difficulties. Part of this difficulty is due to the com-
plexity of describing the projection of semialgebraic sets. While methods such
as Cylindrical Algebraic Decomposition may be used to compute the projection
of (1), these outputs give little insight into the requirements that must be met
for a set to be representable. Another difficulty is that we are not able to use
standard disjunctive extended formulations. This is due to the fact that in gen-
eral a convex quadratic region cannot be decomposed as the Minkowski sum
of a bounded region and a polyhedral cone, in contrast to both polyhedra and
ellipsoidal regions (see [5]).

In order to overcome these difficulties, we design a method to explicitly
compute S := projn(Q ∩ P) for a general convex quadratic region Q ⊆ Rn+p

and a polyhedron P ⊆ Rn+p. A crucial step, stated in Proposition 1, is the
construction of a ‘shadowing skeleton’ of Q ∩ P, namely a finite set L of n-
dimensional affine spaces that satisfy projn(Q ∩ P) =

⋃
L∈L projn(Q ∩ L) ∩
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projn(P ∩ L). The idea of this skeleton is a general version of the projection
method done in [5]. The explicit computation of projn(Q ∩ P) leaves us with
an algebraic description of S which we use to make a technical definition of sets
of Type 1 and Type 2. These definitions allow us to characterize continuous
convex quadratic representable sets as shown in Theorem 3.

In Section 5 we present an algebraic characterization for the general case of
mixed binary convex quadratic representable sets. Theorem 4 follows naturally
from the combination of our results in Section 2 and Section 4. It follows
immediately from Theorem 4 that mixed binary convex quadratic representable
sets can be expressed as a finite union of Qi∩Pi for convex quadratic regions Qi

and polyhedron Pi. However, in contrast to Theorem 1, the convex quadratic
regions Qi that appear in a decomposition share a common geometry. This
compatibility requirement is captured by our definition of sets with the same
structure which follows from combining our definition of sets of Type 1 and
Type 2 with the notion of convex quadratic regions with the same shape.

In Section 6 we work towards a geometric characterization of mixed binary
convex quadratic representable sets. We derive obvious necessary conditions for
a set to be representable from Theorem 3 and Theorem 4, and explore whether
these necessary conditions are in fact are sufficient. We conclude the section,
and paper, with open questions, and an instructive example of a set that is not
mixed binary convex quadratic representable.

1.3 Notation

In this work, we will use the following notation. Given a set E ⊆ Rn×Rp and a
vector ȳ ∈ Rp, we define the ȳ-restriction of E as E|y=ȳ = {x ∈ Rn | (x, ȳ) ∈ E}.
Note that E|y=ȳ geometrically consists of the intersection of E with coordinate
hyperplanes. We write projn(E) for the orthogonal projection of E onto the
space Rn. We denote by rec(E) the recession cone of E and by lin(E) the
lineality space of E.

Given a matrix A we denote by range(A) the range of A and by ker(A) the
kernel of A. If A is positive semidefinite, we write A � 0. This implies that A
is symmetric. Given a half-space H+ = {x ∈ Rn | a>x ≤ b}, we write H for the
hyperplane {x ∈ Rn | a>x = b}.

2 The Bounded Case

In this section we give a characterization of bounded mixed binary convex
quadratic representable sets, i.e., when the system Dw ≤ d in (1) describes
a polytope.

Proof of Theorem 1. We prove sufficiency of the condition by giving an explicit
extended formulation for a set S described by (2). It is similar to the proof
of Theorem 1 in [5]. Assume that we are given a set S as in (2), where Qi =
{x ∈ Rn | x>Qix + (hi)>x + gi ≤ 0} are convex quadratic regions and Pi =
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{x ∈ Rn | Aix ≤ bi} are polytopes. We now introduce new continuous variables
xi ∈ Rn and binary variables δi ∈ {0, 1}, for i = 1, . . . , k, that will model the
individual regions Qi ∩ Pi. Then S can be described as the set of x ∈ Rn such
that

x =

k∑
i=1

xi

Aixi ≤ δibi i = 1, . . . , k

k∑
i=1

δi = 1

k∑
i=1

(
(xi)>Qix

i + (hi)>xi + δigi

)
≤ 0

0 ≤ δi ≤ 1 i = 1, . . . , k

xi ∈ Rn, δi ∈ {0, 1} i = 1, . . . , k.

Now if δ1 = 1 the remaining δi must be 0. Then for each xi with i 6= 1, we have
the constraint Aixi ≤ 0 which has the single feasible point xi = 0 since Pi is a
polytope. The remaining constraints reduce to

x = x1

A1x1 ≤ b1
(x1)>Q1x

1 + (h1)>x1 + g1 ≤ 0

x1 ∈ Rn.

This describes the set Q1 ∩ P1 exactly. The remaining regions follow symmet-
rically.

We note that the constraint
∑k

i=1

(
(xi)>Qix

i+(hi)>xi+δigi

)
≤ 0 describes

a convex quadratic region since it can be described as a quadratic inequality
with defining matrix a block diagonal matrix with blocks either 0 or Qi, and
each Qi � 0.

We show that the linear system is bounded by demonstrating that its set of
feasible points is the graph of a linear transformation restricted to a polytope.
Each system Aixi ≤ δibi, 0 ≤ δi ≤ 1 is independent of any other xj , δj . More-
over, each system is bounded in (xi, δi) as it is the convex hull of the polytope
{xi ∈ Rn |Aixi ≤ bi} × {1} and the origin. Then the set of feasible points in
x1, . . . , xk, δ1, . . . , δk is just a Cartesian product of bounded sets. Finally, the
set of points x satisfying equation x =

∑k
i=1 x

i is bounded since it is the image
of this Cartesian product under a linear transformation. Thus, S is bounded
mixed binary convex quadratic representable.

The remainder of the proof is devoted to proving necessity of the condition.
We are given a convex quadratic region Q and a polytope P in Rn+p+q, and
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define

S̄ := Q∩ P ∩ (Rn+p × {0, 1}q),

S := projn(S̄).

We must show the existence of convex quadratic regions Qi ⊆ Rn, i = 1, . . . , k,
and polytopes Pi ⊆ Rn, i = 1, . . . , k, such that

S =

k⋃
i=1

(Qi ∩ Pi).

Claim 1. It is enough to prove the theorem in the case q = 0.

Proof of claim. Note that, using restrictions, we can write the set S in the form

S =
⋃

z̄∈{0,1}q
projn(S̄|z=z̄).

We first show that each restriction S̄|z=z̄ can be written as Q′ ∩ P ′ for some
convex quadratic region Q′ ⊆ Rn+p and polytope P ′ ⊆ Rn+p. Let z̄ ∈ {0, 1}q.
We note S̄|z=z̄ = Q|z=z̄ ∩P|z=z̄. A short algebraic verification shows that Q′ :=
Q|z=z̄ is a convex quadratic region and P ′ := P|z=z̄ is a polytope.

Now assuming the theorem in the case q = 0, for each z̄ ∈ {0, 1}q we have
projn(S̄|z=z̄) = ∪ti=1(Qi ∩ Pi). Since S is the finite union of such sets, the
theorem follows. �

Claim 2. It is enough to prove the theorem in the case p = 1.

Proof of claim. Let Q ∩ P ⊆ Rn+p. We prove S = projn(Q ∩ P) has the
desired decomposition by induction on p. For this claim, we assume the base
case, p = 1. Now let p = k, and suppose the statement holds for p < k. Given
Q∩ P ⊆ Rn+k, by the base case p = 1 we have

projn+k−1(Q∩ P) =

t⋃
i=1

(Qi ∩ Pi)

where each Qi is a convex quadratic region in Rn+k−1 and each Pi is a polytope
in Rn+k−1. Since the projection of a union is the union of projections we have

S = projn(Q∩ P) =

t⋃
i=1

projn(Qi ∩ Pi).

Then by induction hypothesis, we have

S =

t⋃
i=1

( si⋃
j=1

(Qi,j ∩ Pi,j)
)

where each Qi,j is a convex quadratic region in Rn and each Pi,j is a polytope
in Rn. �
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It remains to prove Theorem 1 in the case that we have a convex quadratic
region Q ⊆ Rn+1 and a polytope P ⊆ Rn+1. The following claim then completes
the proof of Theorem 1.

Claim 3. Let Q ⊆ Rn+1 be a convex quadratic region described by

Q =
{

(x, y) ∈ Rn+1
∣∣∣ (x
y

)>(
Q q
q> γ

)
+

(
hx
hy

)>(
x
y

)
+ g ≤ 0

}
and P ⊆ Rn+1 be a polytope. Then there exist convex quadratic regions Qi ⊆ Rn,
i = 1, . . . , k, and polytopes Pi ⊆ Rn, i = 1, . . . , k, such that (2) holds.

Proof of claim. We first claim that projn(Q ∩ P) = ∪H∈Hprojn(Q ∩ P ∩ H)
where H is a finite set of hyperplanes. Suppose P is defined as the intersection
H+

1 ∩ · · · ∩ H+
s for half-spaces H+

i . Let H be the subset of hyperplanes H ∈
{H1, . . . ,Hs} such that en+1 /∈ lin(H). In the case that γ 6= 0, define the
hyperplane H0 := {(x, y) ∈ Rn+1 | q>x + γy = − 1

2hy} and include H0 in the
set H. This hyperplane has the property that for any fixed x̄ ∈ Rn, the unique
point (x̄, ȳ) ∈ H0 minimizes the univariate quadratic polynomial q(x̄, y) defining
Q|x=x̄. Moreover, en+1 /∈ lin(H0).

We claim that projn(Q∩P) = ∪H∈Hprojn(Q∩P∩H). Let x̄ ∈ projn(Q∩P).
Define Lx̄ = {(x̄, y) ∈ Rn+1 | (x̄, y) ∈ Q ∩ P}. Since P is a polytope, Lx̄ is a
non-empty line segment. Consider the endpoints, possibly both the same point,
of Lx̄. If either endpoint lies on the boundary of P then we are done as this
point must lie on some H ∈ H. Otherwise, both endpoints lie on the boundary
of Q and are thus roots of the quadratic polynomial q(x̄, y). Then the midpoint
of Lx̄ lies on H0.

It remains to show that for each H ∈ H, there exists a convex quadratic
region QH and a polytope PH such that projn(Q ∩ P ∩ H) = QH ∩ PH . Let
H = {(x, y) ∈ Rn+1 | a>x+ αy = b} and note that α 6= 0 since en+1 /∈ lin(H).
It follows that projn(Q ∩ P ∩H) = projn(Q ∩H) ∩ projn(P ∩H) as there is a
unique point (x, y) ∈ H lying over any x ∈ Rn.

We now show that QH := projn(Q ∩ H) is a convex quadratic region and
PH := projn(P∩H) is a polytope. The polyhedron PH is clearly a polytope since
P is a polytope. Define the invertible linear transformation TA : Rn+1 → Rn+1

by multiplication on the left by the matrix

A =

(
In 0
a> α

)
.

Then we have that

QH = projn(Q∩H) = TA(Q)|y=b.

Note that QH is a convex quadratic region as it obtained from Q by an invertible
linear transformation followed by fixing a single variable. �

9



3 The Binary Case

In this section we characterize binary convex quadratic representable sets, i.e.,
when p = 0 is fixed in (1). We refer the reader back to the introduction for
the definition of convex quadratic regions with the same shape. Before proving
Theorem 2 we state a number of lemmas that detail the interaction of binary
variables and convex quadratic regions.

Lemma 1. Let Q ⊆ Rn+q be a convex quadratic region. Then for all z̄ ∈ {0, 1}q,
the sets Q|z=z̄ are convex quadratic regions with the same shape.

Proof. Assume that Q is given by

Q =
{

(x, z) ∈ Rn+q
∣∣∣ (x

z

)>(
Q R
R> Q̄

)(
x
z

)
+

(
hx
hz

)>(
x
z

)
+ g ≤ 0

}
.

Then for any z̄ ∈ {0, 1}q we have

Q|z=z̄ = {x ∈ Rn | x>Qx+ (2Rz̄ + hx)>x+ g + h>z z̄ + z̄>Q̄z̄ ≤ 0}.

Now sinceQ is a convex quadratic region, the matrixQmust be positive semidef-
inite. Moreover, the matrix Q is clearly independent of the choice of z̄ ∈ {0, 1}q.

It remains to show that the vector 2Rz̄+ hx decomposes into Qw+ v where
v ∈ ker(Q) is independent of z̄. We claim that 2Rz̄ ∈ range(Q). Decompose

2Rz̄ = Qw + v for a unique vector v ∈ ker(Q). If v 6= 0, then for λ < − z̄>Q̄z̄
v>v

we have(
λv
z̄

)>(
Q R
R> Q̄

)(
λv
z̄

)
= λ2v>Qv+2z̄>R>(λv)+ z̄>Q̄z̄ = λv>v+ z̄>Q̄z̄ < 0,

a contradiction. Since 2Rz̄ ∈ range(Q), the vector v depends only on hx and is
thus independent of z̄ ∈ {0, 1}q.

The next lemma can be seen as a converse of Lemma 1. We denote by
ei ∈ Rk the ith standard basis vector of Rk.

Lemma 2. Let Q1, . . . ,Qk ⊆ Rn be convex quadratic regions with the same
shape. Then there exists a convex quadratic region Q ⊆ Rn+k such that Q|z=ei =
Qi for each 1 ≤ i ≤ k.

Proof. Suppose that each Qi is described by

Qi = {x ∈ Rn | x>Qx+ (2Qwi + v)>x+ gi ≤ 0},

where Q � 0 and v ∈ ker(Q). Set γi ≥ k(wi)>Qwi and hi = gi − γi, and define
R :=

(
Qw1 | · · · | Qwk

)
, Λ := diag(γ1, . . . , γk), and h> := (v>, h1, . . . , hk).

We claim that

Q :=
{

(x, z) ∈ Rn+k
∣∣∣ (x

z

)>(
Q R
R> Λ

)(
x
z

)
+ h>

(
x
z

)
≤ 0
}
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is a convex quadratic region with the desired restriction property. Then

Q|z=ei = {x ∈ Rn | x>Qx+ (2Rei + v)>x+ hi + γi ≤ 0}

and by construction 2Rei = 2Qwi and hi + γi = gi. Thus, Q|z=ei = Qi.
We now show that Q is a convex quadratic region by demonstrating that

matrix defining Q is positive semidefinite. Let (x, z) ∈ Rn+k. We have that(
x
z

)>(
Q R
R> Λ

)(
x
z

)
= x>Qx+ 2z>R>x+

k∑
i=1

γiz
2
i

= x>Qx+

k∑
i=1

(
2(ziQw

i)>x+ γiz
2
i

)
=

1

k

k∑
i=1

(
x>Qx+ 2(Qkziw

i)>x+ kγiz
2
i

)
.

We show by choice of γi that each summand x>Qx + 2(Qkziw
i)>x + kγiz

2
i is

nonnegative by completing the square. Note

x>Qx+2(Qkziw
i)>x+kγiz

2
i = (x+kziw

i)>Q(x+kziw
i)+(kγi−k2(wi)>Qwi)z2

i .

Now since γi ≥ k(wi)>Qwi we have expressed each summand as the sum of two
non-negative numbers. In particular, each x>Qx + 2(Qkziw

i)>x + kγiz
2
i ≥ 0

and Q is a convex quadratic region.

We note that Lemma 2 shows that a union of convex quadratic regions with
the same shape have a binary lift to a convex quadratic region provided we
intersect it with an appropriate polyhedron.

The proof of Theorem 2 is now a simple combination of the preceding lem-
mas. We note that for the construction of the extended formulation, we cannot
use a system similar to that which appeared in Theorem 1 as it requires addi-
tional continuous variables.

Proof of Theorem 2. We start with sufficiency of the condition. Assume we have
convex quadratic regions Q1, . . . ,Qk ⊆ Rn with the same shape, and polyhedra
P1, . . . ,Pk ⊆ Rn with the same recession cone and let S be defined by (3).
Then by Lemma 2, we obtain a convex quadratic region Q ⊆ Rn+k such that
Q|z=ei = Qi for each 1 ≤ i ≤ k. We use a standard technique to obtain a
polyhedron P ⊆ Rn+k such that P|z=ei = Pi for 1 ≤ i ≤ k and P|z=z̄ = ∅ for
z̄ ∈ {0, 1}k − {e1, . . . , ek}. This technique is known as a Big-M formulation,
and the existence of such a polyhedron is proved in Proposition 6.1 in [14]. It
follows that S = projn(Q∩ P ∩ (Rn × {0, 1}k)).

It remains to show necessity. Let Q ⊆ Rn+q be a convex quadratic region
and P ⊆ Rn+q be a polyhedron. Let S := projn(Q∩P ∩ (Rn × {0, 1}q)). Then

S =
⋃

z̄∈{0,1}q
(Q∩ P)|z=z̄.
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Choose z̄ ∈ {0, 1}q and note that (Q ∩ P)|z=z̄ = Q|z=z̄ ∩ P|z=z̄. Then by
Lemma 1 all Q|z=z̄ are convex quadratic regions with the same shape. Since
each polyhedron P|z=z̄ has recession cone independent of z̄ the theorem follows.

4 The Continuous Case

In this section we find an algebraic characterization of continuous convex quadratic
representable sets, i.e., where q = 0 is fixed in (1). In the first part of this section
we consider a convex quadratic region Q ⊆ Rn+p and a polyhedron P ⊆ Rn+p.
We proceed by computing explicitly the projection projn(Q∩P) and in doing so
come to the definitions for sets of Type 1 and Type 2. In particular, each set of
Type 1 or Type 2 can be written as a finite union of Qi∩Pi for convex quadratic
regions Qi and polyhedra Pi. These definitions will be sufficient conditions for
a set to be continuous convex quadratic representable. In order to show this,
we demonstrate that every set of Type 1 or Type 2 has a lift to Q∩ P ⊆ Rn+p

for some convex quadratic region Q and polyhedron P.
Assume now that we are given a convex quadratic region Q ⊆ Rn+p, a

polyhedron P ⊆ Rn+p, and wish to compute S := projn(Q ∩ P). We begin
by applying an invertible affine transformation to Rn+p that brings Q to a
normalized form.

Lemma 3. Let Q ⊆ Rn+p be a convex quadratic region defined by

Q =
{

(x, y) ∈ Rn+p
∣∣∣ (x

y

)>(
Q R
R> S

)(
x
y

)
+

(
hx
hy

)>(
x
y

)
+ g ≤ 0

}
.

Then there exists an invertible affine transformation T : Rn+p → Rn+p that
takes Q to a convex quadratic region Q′ ⊆ Rn+p such that projn(Q) = projn(Q′)
and

Q′ =
{

(x, y, t) ∈ Rn+k+(p−k)
∣∣∣
xy
t

>Q′ 0 0
0 Ik 0
0 0 0

xy
t

+

h′0
l

>xy
t

+g′ ≤ 0
}
,

(4)
where k = rank(S), Ik is the k × k identity matrix, and either l = e1 or l = 0.

Proof. We will define T as the composition of three invertible affine transfor-
mations. Since S � 0, there exists an orthogonal p × p matrix U such that
S = U>ΛU where Λ = diag(λ1, . . . , λp) and λ1 ≥ · · · ≥ λp ≥ 0. Suppose the
first k eigenvalues of S are positive, and define V = diag(

√
λ1, . . . ,

√
λk, 1, . . . , 1).

Then S = U>V EV U where E is a diagonal matrix whose first k diagonal entries
are 1 and the remaining p− k entries are 0.

Define the transformation T ′ : Rn+p → Rn+p by multiplication on the left
by the matrix

A =

(
I 0
0 V U

)
.

12



Consider the change of coordinates defined by (x, u)> = A(x, y)>. Then T ′(Q)
is described by{

(x, u) ∈ Rn+p
∣∣∣ (x

u

)>(
Q RU>V −1

V −1UR> E

)(
x
u

)
+

(
hx

V −1Uhy

)>(
x
u

)
+g ≤ 0

}
.

Note now that the matrix defining the quadratic region T ′(Q) is positive semidef-
inite. This implies that any diagonal entry being 0 forces the entire correspond-
ing row and column to be 0 as well. Let B denote the first k columns of
RU>V −1. Then (

Q RU>V −1

V −1UR> E

)
=

 Q B 0
B> Ik 0
0 0 0

 .

Define T ′′ : Rn+p → Rn+p by multiplication on the left by the invertible matrix

C =

 In 0 0
B> Ik 0
0 0 Ip−k

 .

Consider the change of coordinates defined by (x, v, w)> = C(x, u)>. Then
T ′′(T ′(Q)) is described by

{
(x, v, w) ∈ Rn+k+(p−k)

∣∣∣
xv
w

>Q′ 0 0
0 Ik 0
0 0 0

xv
w

+

 h′

hv
hw

>xv
w

+g ≤ 0
}
,

where Q′ := Q−BB>, h′ := hx −B(V −1Uhy)+, and

(
hv
hw

)
:= V −1Uhy.

Finally, define the affine transformation L : Rn+p → Rn+p by L(x, v, w) =
H(x, v, w)> + r where

H =

In 0 0
0 Ik 0
0 0 M

 ,

and M is either an invertible matrix such that (M−1)>hw = e1 if hw 6= 0
or M = Ip−k if hw = 0, and r = (0,− 1

2hv, 0)>. We now change coordinates
(x, y, t)> = H(x, v, w)> + r.

Define T = L ◦ T ′′ ◦ T ′. Then T is an invertible affine transformation that
takes Q to Q′ := T (Q) described by (4). Note that T is determined by mul-
tiplication by a matrix whose first n rows are

(
In| 0

)
and a vector r whose

first n entries are zero. This implies that projn(Q) = projn(Q′) and the proof
is complete.

Note that by Lemma 3, without loss of generality, we may assume that Q is
described by (4). We can further simplify the structure of Q by projecting out
all variables ti that do not explicitly appear in the description of Q.
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Lemma 4. Assume that Q ⊆ Rn+p is a convex quadratic region described by (4)
and that P ⊆ Rn+p is a polyhedron. If l = 0 then projn+k(Q ∩ P) = Q′ ∩ P ′
where P ′ = projn+k(P) and Q′ is described by

{
(x, y) ∈ Rn+k

∣∣∣ (x
y

)>(
Q 0
0 Ik

)(
x
y

)
+

(
h
0

)>(
x
y

)
+ g ≤ 0

}
. (5)

If l = e1, then projn+k+1(Q ∩ P) = Q′ ∩ P ′ where P ′ = projn+k+1(P) and Q′
is described by

{
(x, y, t) ∈ Rn+k+1

∣∣∣
xy
t

>Q 0 0
0 Ik 0
0 0 0

xy
t

+

h0
1

>xy
t

+ g ≤ 0
}
. (6)

Proof. Let r = k in the case of (5) and r = k + 1 in the case of (6). It
suffices to show that projn+r(Q∩P) = projn+r(Q)∩ projn+r(P). Then for any
x̄ ∈ projn+r(Q) ∩ projn+r(P) there exists s1, s2 ∈ Rp−r such that (x̄, s1) ∈ Q
and (x̄, s2) ∈ P. Since en+r+j ∈ lin(Q) for each j ≥ 1 we have (x̄, s2) ∈ Q and
hence x̄ ∈ projn+r(Q∩ P). The reverse containment is clear.

Then by Lemma 4, without loss of generality, we may assume that Q is
described by either (5) or (6).

We now construct a family of affine spaces that will simplify the computation
of projn(Q ∩ P). These affine spaces will form a sort of skeleton of the region
Q ∩ P that will contain all the essential information of projn(Q ∩ P). We
will make use of the following observations whose short proofs we include for
completion.

Observation 1. Let q(x) = x>Qx + h>x + g be a quadratic polynomial in n
variables where Q is a positive semidefinite matrix. Then q(x) has a minimum
on Rn if and only if h ∈ range(Q). In this case, the set of minimizers of q(x)
is {x ∈ Rn | 2Qx+ h = 0}.

Proof. Assume h /∈ range(Q). Then since Q is symmetric, we can write h =
Qw + v with Qv = 0 and v 6= 0. Consider x(t) = −tv for t ∈ R. Then we have

q(x(t)) = h>x(t) + g = −tv>v + g.

Since v 6= 0, we see that q(x(t))→ −∞ as t→ +∞. Thus, q(x) has no minimum
on Rn.

We now prove the reverse direction. Since Q is positive semidefinite, the
function q(x) attains its minimum at x̄ if and only if x̄ solves ∇q(x) = 2Qx+h =
0. This set is nonempty since h ∈ range(Q).

Observation 2. Let Q = {x ∈ Rn | x>Qx + h>x + g ≤ 0} be a non-empty
convex quadratic region. Then

rec(Q) = {r ∈ Rn | Qr = 0, h>r ≤ 0}.
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Proof. Let r ∈ Rn such that Qr = 0 and h>r ≤ 0. Fix x̄ ∈ Q and λ ≥ 0.
Then (x̄+ λr)>Q(x̄+ λr) + h>(x̄+ λr) + g = x̄>Qx̄+ h>x̄+ g+ λh>r ≤ 0 and
x̄+ λr ∈ Q. It follows that r ∈ rec(Q).

Assume now that r ∈ Rn either satisfies Qr 6= 0 or Qr = 0 and h>r > 0.
Fix x̄ ∈ Q. Then for any λ ≥ 0 we have

(x̄+λr)>Q(x̄+λr)+h>(x̄+λr)+g = λ2r>Qr+λ(h+2Qx̄)>r+x̄>Qx̄+h>x̄+g,

a polynomial in λ. Since Q � 0, as λ → ∞, this polynomial increases indefi-
nitely. Thus, r /∈ rec(Q).

Proposition 1. Assume that Q ⊆ Rn+p is a convex quadratic region described
by (5) or (6) and that P ⊆ Rn+p is a polyhedron. Then either projn(Q ∩ P) =
projn(P) or there exists a finite collection L of affine spaces such that

projn(Q∩ P) =
⋃
L∈L

projn(Q∩ P ∩ L). (7)

Moreover, each L ∈ L has dimension n and can be described by a system Fx+
Gy = d where G is an invertible p× p matrix.

Proof. Assume first that Q is described by (5) and let

q(x, y) =

(
x
y

)>(
Q 0
0 Ik

)(
x
y

)
+

(
h
0

)>(
x
y

)
+ g.

Suppose that P = {(x, y) ∈ Rn+p | (ai)>x + (bi)>y ≤ ci for all i ∈ I} where I
is some finite index set. Define J to be the collection of subsets J ⊆ I with
|J | ≤ p and such that the set {bi}i∈J is linearly independent. For each J ∈ J
we construct an affine space LJ to include in L. We construct LJ so that for
every fixed x̄ ∈ Rn, the unique point (x̄, yJx̄ ) ∈ LJ minimizes q(x̄, y) over the
affine space determined by setting to equality the inequalities indexed by J and
fixing x = x̄.

We first note that ∅ ∈ J trivially. In the case that J = ∅, we define
LJ = {(x, y) ∈ Rn+p | y = 0}. Then for any fixed x̄ ∈ Rn the point y = 0
minimizes q(x̄, y) on Rp. We will have need to refer to following construction
again, so we emphasize it here.

Construction of a Minimizing Affine Space. Consider a nonempty set
J ∈ J , say |J | = m, and define R,U, and l to be the matrices with rows
(ai)>, (bi)>, and ci for i ∈ J , respectively. Consider the affine space KJ defined
by Rx+ Uy = l.

Since m ≤ p we know U has rank m and we can partition the y variables
into new variables u and v where the v variables correspond to columns of U
that define a full rank submatrix. This division into (u, v) ∈ Rp−m×Rm causes
KJ to be described by Rx + Su + Tv = l where T is invertible. Substitute
v = T−1(l − Rx− Su) into the polynomial q(x, u, v) and fix a point x̄ ∈ Rn to
obtain the polynomial q(x̄, u) defined by

u>(I + S>(T−1)>T−1S)u+ 2(S>(T−1)>T−1Rx̄+ 2S>(T−1)>T−1l)>u+ g(x̄).
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Now since I+S>(T−1)>T−1S is positive definite, by Observation 1, the unique
minimum of q(x̄, u) is the point satisfying

2(I + S>(T−1)>T−1S)u+ 2(S>(T−1)>T−1Rx̄− S>(T−1)>T−1l) = 0.

Note that this minimum depends linearly on x̄. We thus define LJ to be the
affine space determined by

S>(T−1)>T−1Rx+ (I + S>(T−1)>T−1S)u = S>(T−1)>T−1l

Rx+ Su+ Tv = l.
(8)

Since I+S>(T−1)>T−1S and T are invertible matrices, LJ is an affine space of
dimension n and is described by a system Fx+Gy = d where G is an invertible
p× p matrix. This marks the end of the construction. †

Set
L = {LJ | J ∈ J }. (9)

We claim that L satisfies (7). It suffices to show that for any point x̄ ∈ projn(Q∩
P), there exists ȳ ∈ Rp and L ∈ L such that (x̄, ȳ) ∈ Q ∩ P ∩ L.

Let x̄ ∈ projn(Q∩P). Then there exists y0 ∈ Rp such that (x̄, y0) ∈ Q∩P.
This implies that q(x̄, y0) ≤ 0 and since q(x̄, 0) minimizes q(x̄, y) on Rp we have
(x̄, 0) ∈ Q as well. If y0 = 0, we may choose LJ corresponding to J = ∅ and we
are done. Otherwise, the line segment joining (x̄, y0) and (x̄, 0) is completely
contained in Q. Then by moving along this line segment from (x̄, y0) toward
(x̄, 0) and inside P we either reach the point (x̄, 0) or stop at a point (x̄, y1) ∈ P.
Then there exists an inequality (ai)>x+(bi)>y ≤ ci with bi 6= 0 that is satisfied
at equality by (x̄, y1) and is not satisfied by (x̄, 0). We then set J = {i} and
continue this sliding process recursively.

Assume that we are at the point (x̄, yk) with current index set J . We now
consider the line segment joining (x̄, yk) and (x̄, yJx̄ ). Since (x̄, yJx̄ ) is the mini-
mizer of q(x̄, y) on KJ , this line segment is contained in Q∩KJ . Again, slide the
point (x̄, yk) toward (x̄, yJx̄ ) inside P and we either reach the point (x̄, yJx̄ ) or stop
at a point (x̄, yk+1) ∈ P. Then there exists an inequality (aj)>x+ (bj)>y ≤ cj
with bj /∈ Span({bi}i∈J) that is satisfied at equality by (x̄, yk+1) and is not
satisfied by (x̄, yJx̄ ). We update J to include j and repeat this process.

The end result is that we find a point (x̄, ȳ) ∈ Q ∩ P ∩ LJ for some J ∈ J .
In fact, either we hit a point (x̄, yJx̄ ) at some iteration or after applying the
procedure p times we restrict ourselves to an n-dimensional affine space, which
by construction must be in L.

Now assume Q is described by (6). There is one degenerate case to consider.
Note that for any fixed x̄ ∈ Rn we have rec(Q|x=x̄) = {(0,−λ) ∈ Rp+1 | λ ≥ 0}
by Observation 2. Moreover, for any (x̄, ȳ) ∈ Rn+p there exists t̄ ∈ R such that
(x̄, ȳ, t̄) ∈ Q. To see this, simply take t̄ ≤ −(x̄>Qx̄+ȳ>ȳ+h>x̄+g). Suppose that
(0,−1) ∈ rec(P|x=x̄) for every x̄ ∈ Rn. We claim that projn(Q∩P) = projn(P).
Let x̄ ∈ projn(P) so that there exists (ȳ, t̄) ∈ Rp+1 such that (x̄, ȳ, t̄) ∈ P. Then,
by the note above, for sufficiently large λ ≥ 0 we have (x̄, ȳ, t̄− λ) ∈ Q∩P and
x̄ ∈ projn(Q∩ P).
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The remaining case when Q is described by (6) and (0,−1) /∈ rec(P|x=x̄)
for any x̄ ∈ Rn follows similarly to the case where Q is described by (5). We
make note of the necessary changes in the proof. Adjust J to be the set of
subsets J ⊆ I such that |J | ≤ p + 1 and where KJ is described by a system
Rx + Uy + V t = l where (U | V ) is of full rank and at least one entry of V is
negative. This guarantees that for each fixed x̄ ∈ Rn the polynomial q(x̄, y) has
a minimum on KJ |x=x̄, the same condition that we needed before. Note that
in this case the empty set is not a member of J .

We demonstrate how to modify the first step of the recursive descent de-
scribed in the previous case. After this initial step the recursion continues
exactly as in the general step detailed above. Let x̄ ∈ projn(Q∩P). Then there
exists (y0, t0) ∈ Rp such that (x̄, y0, t0) ∈ Q ∩ P. Since (0,−1) /∈ rec(P|x=x̄),
the ray based at (x̄, y0, t0) and directed along (0, 0,−1) cannot be completely
contained in P. In particular, moving in the direction (0, 0,−1) from the point
(x̄, y0, t0) and inside P we stop at a point (x̄, y1, t1) ∈ P. Then there exists an
inequality (ai)>x+ (bi)>y + vit ≤ ci with vi < 0 that is satisfied at equality by
(x̄, y1, t1). We now set J = {i} and the recursion process continues identically
as before.

The family L of affine spaces defined in Proposition 1 allows us to explicitly
compute the set projn(Q ∩ P). We do so by considering each set Q ∩ P ∩ L
in turn. In the next lemma we will see that for each L ∈ L, the projection
projn(Q ∩ P ∩ L) = QL ∩ PL for some convex quadratic region QL ⊆ Rn and
polyhedron PL ⊆ Rn. This implies that the set projn(Q ∩ P) is a finite union
of the sets QL ∩ PL. However, in contrast to Theorem 1 in [5], the QL and PL

appearing in the projection cannot be arbitrary. We will see that they share a
common structure. An understanding of this structure is essential to finding an
extended formulation and thus obtaining a full algebraic characterization. This
compatibility requirement is captured in our definition of sets of Type 1 and
Type 2.

From here on, we compute an algebraic description of projn(Q ∩ P) where
Q is described by (5) or (6). The region resulting from projn(Q ∩ P) in the
case (5) will be called a set of Type 1 and in the case of (6) a set of Type 2.

We are thus interested in computing projn(Q ∩ P ∩ L) where L ∈ L. We
claim that projn(Q∩P ∩L) = projn(Q∩L)∩ projn(P ∩L). Let x̄ ∈ projn(Q∩
P)∩ projn(P ∩L). Then there exists y1, y2 ∈ Rp such that (x̄, y1) ∈ Q∩L and
(x̄, y2) ∈ P ∩ L. Now since L is defined by Fx + Gy = d with G an invertible
p× p matrix, we have yi = G−1(d−Fx̄) for i = 1, 2. In particular, y1 = y2 and
we have that x̄ ∈ projn(Q∩ P ∩ L). The reverse containment is obvious.

Therefore, a description of the sets projn(Q ∩ L) and projn(P ∩ L) is of
particular interest to us as they serve as the base regions making up continuous
convex quadratic representable sets. We define two functions f1, f2 that take
as input a convex quadratic region Q of the form (5) or (6), respectively, and
a special n-dimensional affine space L and output a convex quadratic region,
which we will show to be the projection onto Rn of the set Q∩ L.

Let Q be a convex quadratic region described by (5) and L an affine space
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described by Fx+Gy = d with G an invertible p×p matrix. We define f1[Q, L]
to be the set of x ∈ Rn satisfying

x>(Q+F>(G−1)>G−1F )x+(h−2F>(G−1)>G−1d)>x+d>(G−1)>G−1d+g ≤ 0.

Let Q be a convex quadratic region described by (6) and L an affine space
described by Fx+G(y, t)> = d where G is an invertible (p+1)× (p+1) matrix.
We define f2[Q, L] to be the set of x ∈ Rn satisfying

x>(Q+ F>(G−1)>EkG
−1F )x+ (h− F>(G−1)>ek+1 − 2F>(G−1)>EkG

−1d)>x

+d>(G−1)>EkG
−1d+ ((G−1)>ek+1)>d+ g ≤ 0,

where Ek is the (k+ 1)× (k+ 1) matrix with principal k× k minor the identity
matrix and zero elsewhere. We note that f1[Q, L] and f2[Q, L] are convex
quadratic regions in Rn, since the matrices defining them are each the sum of
two positive semidefinite matrices.

Assume now that Q is described by (5). We show that projn(Q ∩ L) =
f1[Q, L]. Define the invertible linear transformation TA : Rn+p → Rn+p by
multiplication on the left by the matrix

A =

(
In 0
F G

)
.

Then, we have that projn(Q∩L) = TA(Q)|y=d = f1[Q, L]. A similar proof shows
that projn(Q∩ L) = f2[Q, L] when Q is described by (6).

Similarly, we define a function Π that takes as input a polyhedron P in Rn+r

and a special n-dimensional affine space and outputs a polyhedron in Rn. Let
P = {x ∈ Rn+r | (ai)>x+ (bi)>y ≤ ci for all i ∈ I} be a polyhedron and L an
affine space described by Fx + Gy = d with G an invertible r × r matrix. We
define Π[P, L] to be the polyhedron

{x ∈ Rn | (ai)>x+ (bi)>G−1(d− Fx) ≤ ci for all i ∈ I}.

It is immediate from the substitution y = G−1(d − Fx) that projn(P ∩ L) =
Π[P, L]. Thus, we have established the following lemma.

Lemma 5. Let Q ⊆ Rn+p be a convex quadratic region given by (5) or (6) and
P ⊆ Rn+p a polyhedron. Let L be the family defined in Proposition 1. For each
L ∈ L define PL = Π[P, L] and either QL = f1[Q, L] in the case of (5), or
QL = f2[Q, L] in the case of (6). Then

projn(Q∩ P) =
⋃
L∈L
QL ∩ PL.

We can use the algebraic description from Lemma 5 to complete our char-
acterization. We are now ready for our technical definitions of Type 1 and
Type 2.

Let S ⊆ Rn. We say that S is a set of Type 1 if there exists a convex
quadratic region Q̄ = {x ∈ Rn | x>Qx+h>x+g ≤ 0}, an integer k ≥ 0, a finite
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index set I, and vectors (ai, bi, ci) ∈ Rn+k+1 for each i ∈ I with the following
compatibility structure.

Let J be the collection of subsets J ⊆ I with |J | ≤ k such that the set
{bi}i∈J is linearly independent. Then for each nonempty J ∈ J we define the
affine space LJ ⊆ Rn+k to be the output of the construction of a minimizing
affine space found in the proof of Proposition 1. These objects are required to
satisfy

S = (Q̄ ∩i∈I {x ∈ Rn | (ai)>x ≤ ci})
⋃
J∈J

(QLJ
∩ PLJ

)

where each PLJ
= Π[P, LJ ] and each QLJ

= f1[Q, LJ ].
The definition of a set of Type 2 is exactly as above, except that S is required

to satisfy

S =
⋃
J∈J

(QLJ
∩ PLJ

)

where each PLJ
= Π[P, LJ ] and each QLJ

= f2[Q,LJ ].

Theorem 3. Let S ⊆ Rn. Then S is continuous convex quadratic representable
if and only if S is a set of Type 1 or Type 2.

Proof. Assume first that Q ⊆ Rn+p is a convex quadratic region and P ⊆ Rn+p

is a polyhedron. Then Lemma 3, Lemma 4, Proposition 1, and Lemma 5 show
that S is of Type 1 or Type 2.

Assume now that S is a set of Type 1. Consider the convex quadratic region
Q ⊆ Rn+k described by (5), i.e.,(

x
y

)>(
Q 0
0 Ik

)(
x
y

)
+

(
h
0

)>(
x
y

)
+ g ≤ 0,

and the polyhedron P ⊆ Rn+k described as

{(x, y) ∈ Rn+k | (ai)>x+ (ui)>y ≤ ci for all i ∈ I}.

Then Proposition 1 and Lemma 5 show that S = projn(Q∩ P).
The case of S being a set of Type 2 is identical to the case of Type 1, save

for the construction of Q satisfying (6) instead of (5).

5 The Mixed Binary Case

In this section, we combine the results of Sections 3 and 4 to state a charac-
terization theorem for sets S ⊆ Rn that are mixed binary convex quadratic
representable.

Let S ⊆ Rn be a set of Type 1 (or 2). Then S is determined by the data of a
convex quadratic region Q̄ ⊆ Rn, an integer k ≥ 0, an index set I, and vectors
(ai, bi, ci) ∈ Rn+k+1 for i ∈ I.

Given two sets S, S′ ⊆ Rn both of Type 1 (resp. both of Type 2), we say
that S and S′ have the same structure if the data determining S and S′ as sets
of Type 1 (resp. Type 2) can be chosen so that
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(i) k = k′,

(ii) Q̄ and Q̄′ have the same shape,

(iii) I = I ′ and (ai, bi) = (a′i, b′i) for each i ∈ I.

We can now state and prove our characterization theorem.

Theorem 4. Let S ⊆ Rn. Then S is mixed binary convex quadratic repre-
sentable if and only if there exist sets S1, . . . , Sr ⊆ Rn all of Type 1 (or all of
Type 2) with the same structure, such that S = ∪ri=1Si.

Proof. Assume first that there exist sets S1, . . . , Sr ⊆ Rn of Type 1 all with the
same structure such that S = ∪ri=1Si. Then by Theorem 3 there exist convex
quadratic regions Qi ⊆ Rn+k and polyhedra Pi ⊆ Rn+k for i = 1, . . . , r such
that Si = projn(Qi∩Pi). Moreover, it follows from the construction given in the
proof of Theorem 3 that all the Qi have the same shape and all Pi have the same
recession cone. It follows by applying Theorem 2 to ∪ri=1(Qi ∩ Pi) that there
exists a convex quadratic region Q ⊆ Rn+k+r and a polyhedron P ⊆ Rn+k+r

such that
r⋃

i=1

(Qi ∩ Pi) = projn+k(Q∩ P ∩ (Rn+k × {0, 1}r)).

Now,

projn(

r⋃
i=1

(Qi ∩ Pi)) =

r⋃
i=1

projn(Qi ∩ Pi) =

r⋃
i=1

Si = S.

In particular, S is mixed binary convex quadratic representable. The proof for
sets of Type 2 follows similarly.

For the reverse direction, let Q ⊆ Rn+p+q be a convex quadratic region and
P ⊆ Rn+p+q be a polyhedron and set

S := projn(Q∩ P ∩ (Rn+p × {0, 1}q)).

Then by allowing z̄ to vary over {0, 1}q and Lemma 1 we have

S =
⋃

z̄∈{0,1}q
projn(Q|z=z̄ ∩ P|z=z̄),

where each Q|z=z̄ has the same shape and each P|z=z̄ has the same recession
cone. We use the following technical claim to complete the proof of the theorem.

Claim 1. Let Q,Q′ ⊆ Rn+p be two convex quadratic regions with the same
shape and P,P ′ ⊆ Rn+p be polyhedra with the same recession cone. Then
projn(Q ∩ P) and projn(Q′ ∩ P ′) are both sets of Type 1 (or both sets of Type
2) with the same structure.
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Proof of claim. Let S = projn(Q ∩ P) and S′ = projn(Q′ ∩ P ′). We first
normalizeQ andQ′ as in Lemma 3. Note that an invertible affine transformation
takes two convex quadratic regions with the same shape to two convex quadratic
regions with the same shape. Similarly, an invertible transformation preserves
equality of the recession cones of two polyhedron.

Thus, we can assume that Q and Q′ have the same shape and are described
by (4). We can now apply Lemma 4 and further assume that Q and Q′ are both
described by (5), or both by (6), and still having the same shape. Moreover,
since projn+k(rec(P)) = rec(projn+k(P)) we may still assume that P and P ′
have the same recession cone.

Assume now that Q and Q′ are described by (5) having the same shape and
that P and P ′ have the same recession cone. It is well known that there exists a
matrix M ∈ Rm×(n+k) and vectors r, r′ ∈ Rm such that P = {z ∈ Rn+k | Mz ≤
r} and P ′ = {z ∈ Rn+k | Mz ≤ r′}. It now follows that S and S′ are both sets
of Type 1 (or both of Type 2) with the same structure. �

By Claim 1, it follows that the sets projn(Q|z=z̄ ∩ P|z=z̄) are all sets of
Type 1 (or all sets of Type 2) with the same structure.

6 Toward a Geometric Characterization

The algebraic characterizations in Section 4 of continuous convex quadratic rep-
resentable sets and in Section 5 of mixed binary convex quadratic representable
sets lead to a natural question. Are there geometric conditions that character-
ize continuous and mixed binary convex quadratic representable sets? In this
section, we focus on what these algebraic characterizations imply concerning a
geometric description of representable sets.

Consider a continuous convex quadratic representable set S ⊆ Rn. As a
consequence of Theorem 3, there exist convex quadratic regions Qi ⊆ Rn and
polyhedra Pi ⊆ Rn for i = 1, . . . , k such that S = ∪ki=1Qi ∩ Pi. Since S is
representable it can be realized as the projection of a convex set which implies
that S must be convex as well.

It is unclear whether these two obvious necessary conditions are in fact
sufficient as well. This leads us to the following question.

Question 1. Let S ⊆ Rn. Is it true that S is continuous convex quadratic
representable if and only if S is convex and there exist convex quadratic regions
Qi ⊆ Rn and polyhedra Pi ⊆ Rn for i = 1, . . . , k such that

S =

k⋃
i=1

Qi ∩ Pi ? (10)

The main difficulty in establishing a positive answer to this question is find-
ing an extended formulation for a set S given by (10). As a step in this direction,
given a finite collection of convex quadratic regions Q1, . . . ,Qk in Rn we can
show that there exist a convex quadratic region Q in Rn+k(n+1) and affine spaces
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L1, . . . , Lk in Rn+k(n+1), described by Fix+Giy = di with each Gi an invertible
matrix, such that Qi = projn(Q ∩ Li) for i = 1, . . . , k. It is unclear whether
this construction allows for a polyhedron P that would complete the extended
formulation.

We can make a similar analysis of necessary conditions in the case of a mixed
binary convex quadratic representable set S ⊆ Rn. It follows from Theorem 4
that S must be the union of convex regions R1, . . . , Rk where each Ri is a
continuous convex quadratic representable set. It can be checked that each of
the regions Ri must have the same set of recession directions. However, these
necessary conditions are not sufficient.

An example of a set that is not representable. Consider the set S ⊆ R2

illustrated in Figure 3 below and described by S = S1∪S2 where S1 = {(x, y) ∈
R2 | x2− y ≤ 0, x ≥ 1} and S2 = {(x, y) ∈ R2 | x2− y ≤ 0, x ≤ −1}. Then S is
the union of two continuous convex quadratic representable sets with the same
recession cone, and thus meets the two obvious necessary conditions described
above. We will show however, that S is not mixed binary convex quadratic
representable. In order to do so, we will derive a stronger necessary condition
for mixed binary convex quadratic representable sets. †

Figure 3: A set that is not mixed binary convex quadratic representable

Let C ⊆ Rn be a nonempty closed convex set. Let a ∈ Rn be a nonzero
vector. We say that a is an unbounded linear objective of C if max{a>x | x ∈
C} = +∞. We can now establish the following proposition.

Proposition 2. Let Q be a convex quadratic region in Rn described by

Q = {x ∈ Rn | x>Qx+ (Qw + v)>x+ g ≤ 0},

where v ∈ ker(Q) and v 6= 0. Let P ⊆ Rn be a polyhedron. Assume that Q ∩ P
is nonempty. Then a ∈ Rn is an unbounded linear objective of Q ∩ P if and
only if either

(a) there exists r ∈ rec(P) ∩ rec(Q) such that a>r > 0; or

(b) there exist both r ∈ rec(P) ∩ relint(rec(Q)) such that a>r ≥ 0 and s ∈
rec(P) such that a>s > 0.

Proof. We first note that by Observation 2, relint(rec(Q)) = {x ∈ Rn | Qx =
0, v>x < 0}.
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Assume first that there exists r ∈ rec(P) ∩ rec(Q) such that a>r > 0. Fix
M ≥ 0. We show how to find a point in Q∩P with objective value at least M .
Let x̄ ∈ Q∩P. There exists λ ≥ 0 such that x̄+λr ∈ Q∩P and a>(x̄+λr) ≥M .
Thus, a is an unbounded linear direction of Q∩ P.

Suppose there exist r ∈ rec(P) ∩ relint(rec(Q)) such that a>r ≥ 0 and
s ∈ rec(P) such that a>s > 0. Fix M ≥ 0. We show how to find a point in
Q∩P with objective value at least M . Let x̄ ∈ Q∩P. Now, we may assume that

M ≥ a>x̄ else we are done. Set γ = M−a>x̄
a>s

and y = x̄+γs. Then, since v>r < 0,

for any λ ≥ max{−y>Qy+(Qw+v)>y+g
v>r

, 0}, we have a>(y + λr) ≥ a>y = M .
It now suffices to show that y + λr ∈ Q ∩ P. Since r, s ∈ rec(P), clearly
y + λr = x̄+ γs+ λr ∈ P. Now since Qr = 0, we have

(y+λr)>Q(y+λr)+(Qw+v)>(y+λr)+g = λv>r+y>Qy+(Qw+v)>y+g ≤ 0,

by choice of λ. Thus, y+ λr ∈ Q∩P and a is an unbounded linear objective of
Q∩ P.

We prove the reverse direction by induction on dim(lin(Q)). Suppose that
a is an unbounded linear objective of Q∩P. Then there exists a sequence {xk}
in Q ∩ P such that a>xk → +∞. Let wk = xk

||xk|| . Then {wk} is a bounded

sequence and therefore must have a convergent subsequence. Suppose w̄ is a
limit point of this sequence. Then w̄ is a unit vector, satisfies a>w̄ ≥ 0, and it
is a fact of convex analysis that w̄ ∈ rec(P) ∩ rec(Q).

If w̄ satisfies a>w̄ > 0 then we have met condition (a), and we are done.
Thus, we may assume that a>w̄ = 0. Since a is an unbounded linear objective of
P, it follows from the Minkowski-Weyl decomposition theorem that there exists
s ∈ rec(P) such that a>s > 0. If w̄ satisfies v>w̄ < 0 then w̄ ∈ relint(rec(Q))
and we are done.

In the base case, dim(lin(Q)) = 0, we have rec(Q) = {λv | λ ≤ 0} and since
w̄ 6= 0 it follows that v>w̄ < 0.

In order to prove the inductive step we assume that either condition (a) or
(b) holds for an unbounded linear objective provided dim(lin(Q)) < k. Assume
dim(lin(Q)) = k. By the same construction as before, we either meet condition
(a) or (b) or have a vector w̄ ∈ rec(P)∩rec(Q) satisfying a>w̄ = 0 and v>w̄ = 0.

It remains to find r ∈ rec(P) ∩ relint(rec(Q)) satisfying a>r ≥ 0. We note
that by Observation 2, we have w̄ ∈ lin(Q). Consider the projection of Q ∩ P
and the vector a onto the orthogonal complement of Span({w̄}). Let Q′ denote
the projection of Q, P ′ the projection of P, and a′ the projection of a. Since
w̄ ∈ lin(Q) and a>w̄ = 0 we have that a′ is unbounded linear objective of
Q′ ∩ P ′ and dim(lin(Q′)) = k − 1. We can now apply the induction hypothesis
to obtain either a vector r′ ∈ rec(P ′)∩rec(Q′) satisfying a′>r′ > 0 or two vectors
u′ ∈ rec(P ′) ∩ relint(rec(Q′)) satisfying a′>u′ ≥ 0 and s′ ∈ rec(P ′) satisfying
a′>s′ > 0. We claim that by lifting the vectors r′, u′, and s′ back to the original
space, we can obtain vectors satisfying either (a) or (b) for the initial region
Q∩ P.

Assume first that there exists r′ ∈ rec(P ′) ∩ rec(Q′) satisfying a′>r′ > 0.
Since r′ ∈ rec(P ′) there exists r ∈ rec(P) that projects down to r′. In particular,
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r = r′ + αw̄ for some α ∈ R. It follows that r ∈ rec(Q) and a>r > 0 so that
condition (a) is met.

Assume now that there exist two vectors u′ ∈ rec(P ′) ∩ relint(rec(Q′)) sat-
isfying a′>u′ ≥ 0 and s′ ∈ rec(P ′) satisfying a′>s′ > 0. Again, there exists
u ∈ rec(P) such that u = u′ + αw̄ for some α ∈ R. Since w̄ ∈ lin(Q) and
a>w̄ = 0 , it follows that u ∈ rec(P) ∩ relint(rec(Q)) and a>u ≥ 0. Similarly,
there exists s ∈ rec(P) that projects down to s′. Then a>s > 0 and condition
(b) is met.

A description of unbounded linear objectives for convex quadratic regions,
with v 6= 0, can be obtained by considering Proposition 2 when P = Rn. In
this case, a is an unbounded linear objective of Q if and only if there exists
r ∈ relint(rec(Q)) such that a>r ≥ 0.

We note that a similar characterization of bounded linear objectives holds
when v = 0, i.e., when Q is an ellipsoidal region, see [5, 4] for more details.

Proposition 3. Let E ⊆ Rn be an ellipsoidal region and P ⊆ Rn be a polyhe-
dron. Assume that E ∩ P is nonempty. Then a ∈ Rn is an unbounded linear
objective of E∩P if and only if there exists r ∈ rec(P)∩rec(E) such that a>r > 0.

Proof. We first note that by the proof of Claim 2 in [5], we have E∩P = B+C for
a bounded set B ⊆ Rn and a polyhedral cone C. Moreover, by Observations 2
and 3 in [5], C is the polyhedral cone rec(P) ∩ rec(E). Assume now that a
is an unbounded linear objective of E ∩ P. Since B is a bounded set, there
exists r ∈ rec(P) ∩ rec(E) such that a>r > 0. Assume now that there exists
r ∈ rec(P) ∩ rec(E) satisfying a>r > 0. Fix x̄ ∈ E ∩ P and M ≥ 0. Since
a>r > 0, there exists λ ≥ 0 such that x̄+ λr ∈ E ∩P and a>(x̄+ λr) ≥M .

Again, a description of unbounded linear objectives for ellipsoidal regions
can be recovered by considering Proposition 3 when P = Rn. In this case, a is
an unbounded linear objective of E if and only if there exists r ∈ rec(E) such
that a>r > 0.

Together Propositions 2 and 3 describe the set of unbounded linear objectives
of sets that are the intersection of a convex quadratic region and a polyhedron.
The following corollary to Propositions 2 and 3 establishes a new necessary
condition for mixed binary convex quadratic representable sets.

Corollary 1. Let S ⊆ Rn be a mixed binary convex quadratic representable set.
Then there exist continuous convex quadratic representable sets R1, . . . , Rk ⊆ Rn

each with the same set of unbounded linear objectives such that S = ∪ki=1Ri.

Proof. Since S is mixed binary convex quadratic representable, there exists a
convex quadratic region Q ⊆ Rn+p+q and a polyhedron P ⊆ Rn+p+q such that

S = projn(Q∩ P ∩ (Rn+p × {0, 1}q)).

Take R1, . . . , Rk to be the nonempty regions among projn((Q ∩ P)|z=z̄) for
z̄ ∈ {0, 1}q. Then clearly, each Ri is continuous convex quadratic representable,
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S = ∪ki=1Ri, and it remains to show that each Ri has the same set of unbounded
linear objectives.

Now, by Propositions 2 and 3 the set of unbounded linear objectives of a
non-empty set Q′∩P ′ depends only on the recession cone of Q′ and the recession
cone of P ′. We now apply Lemma 1 to observe that each region (Q∩P)|z=z̄ has
shape of Q|z=z̄ and recession cone of P|z=z̄ independent of choice of z̄ ∈ {0, 1}q.
It then follows by Observation 2, that the recession cone of Q|z=z̄ is independent
of choice of z̄ ∈ {0, 1}q. In particular, each nonempty (Q∩P)|z=z̄ has the same
set of unbounded linear objectives. It follows that their projections, R1, . . . , Rk

have the same set of unbounded linear objectives as well.

An example of a set that is not representable (cont.). Assume then
that S is mixed binary convex quadratic representable. Then, by Corollary 1,
S decomposes into a union of regions R1, . . . , Rk each with the same set of
unbounded linear objectives. However, the two regions S1 and S2 do not have
the same set of unbounded linear objectives. In particular, (1, 0)> must be
an unbounded linear objective for at least one Ri contained in S1. However,
max{x | x ∈ S2} = −1 which implies that (1, 0)> is not an unbounded linear
objective for some Rj , a contradiction. It follows that S is not mixed binary
convex quadratic representable. †

We note that Corollary 1 imposes a stronger necessary condition on mixed
binary convex quadratic representable sets than our initial observation provides.
It is unclear whether stronger necessary conditions are required. Thus, we are
left to consider the following question.

Question 2. Let S ⊆ Rn. Is it true that S is mixed binary convex quadratic
representable if and only if there exist continuous convex quadratic representable
sets R1, . . . , Rk ⊆ Rn each with the same set of unbounded linear objectives such
that S = ∪ki=1Ri ?

As for Question 1, in order to show that Question 2 is true, the main difficulty
is in finding a suitable extended formulation for the given set S. This is due
to the fact that the extended formulations pervasive throughout disjunctive
programming fail in the presence of nonlinear constraints. While such extended
formulations can be altered to behave nicely under certain conditions, e.g., when
S is bounded, it seems that entirely different formulations must be found for
the general case.

If we were to show that the questions were false, we should search for strictly
stronger necessary conditions satisfied by the respective classes of representable
sets. The algebraic characterizations found in Sections 4 and 5 provide a solid
foundation for this search. In particular, there is still much to explore in the
projection procedure described in Section 4. At the current moment however, it
is unclear what further sort of geometric conditions are implied by the algebraic
characterizations.

An interesting future work would be exploring whether imposing stronger
conditions on a given set S ⊆ Rn would lead to a readily constructible ex-
tended formulation. In particular, can we find certain classes of mixed binary
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convex quadratic representable sets for which we can provide explicit extended
formulations?

The notion of unbounded linear objective is quite similar to the notion of
thin convex sets explored in [6]. Let K ⊆ Rn be a closed convex set. A set K
is thin if the following holds for all a ∈ Rn: max{a>x | x ∈ K} = +∞ if and
only if there exists r ∈ rec(K) such that a>r > 0. We conclude this paper by
characterizing which convex quadratic regions are thin.

Proposition 4. Let Q ⊆ Rn be a convex quadratic region. Then Q is thin if
and only if Q is either an ellipsoidal region or a half-space.

Proof. Suppose that Q is described by

Q = {x ∈ Rn | x>Qx+ (Qw + v)>x+ g ≤ 0}

where v ∈ ker(Q).
Assume first that Q is either an ellipsoidal region or a half-space. Since a

half-space is clearly thin, we may assume thatQ is an ellipsoidal region. Then by
the characterization of unbounded linear objectives of Q following Proposition 3
Q is thin.

Assume now that Q is neither an ellipsoidal region nor a half-space. This
implies that Q 6= 0 and v 6= 0. Then by the characterization of unbounded linear
objectives of Q following Proposition 2, any nonzero vector a in the orthogonal
complement of ker(Q) is an unbounded linear objective of Q. Any such vector
a is orthogonal to all vectors in rec(Q) and thus Q is not thin.

In [6], the authors show that if a closed convex set K ⊆ Rn with int(K) ∩
Zn 6= ∅ is not thin, then the region conv(K ∩ Zn) is not a polyhedron. Thus,
for a general convex quadratic set Q ⊆ Rn the region conv(Q ∩ Zn) is not a
polyhedron. The lack of a succinct description of the points in Q ∩ Zn is one
of the reasons we do not investigate extended integer variables in this work. A
possible future work could consider this more general setting.
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