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Abstract

Representability results for mixed-integer linear systems play a funda-
mental role in optimization since they give geometric characterizations of
the feasible sets that can be formulated by mixed-integer linear program-
ming. We consider a natural extension of mixed-integer linear systems
obtained by adding just one ellipsoidal inequality. The set of points that
can be described, possibly using additional variables, by these systems are
called ellipsoidal mixed-integer representable. In this work, we give geo-
metric conditions that characterize ellipsoidal mixed-integer representable
sets.

Key words: mixed-integer programming; quadratic programming; repre-
sentability; ellipsoidal constraints

1 Introduction

The theory of representability starts with a paper of Dantzig [2] and studies one
fundamental question: Given a system of algebraic constraints of a specified
form, which subsets of Rn can be represented in this way, possibly using addi-
tional variables? Several researchers have investigated representability questions
(see, e.g., [5, 6, 15]), and a systematic study for mixed-integer linear systems is
mainly due to Meyer and Jeroslow (see [10, 11, 7, 12, 9, 8]).

Since projections of polyhedra are polyhedral (see [14]), the sets repre-
sentable by systems of linear inequalities are polyhedra. More formally, a set
S ⊆ Rn is representable as the orthogonal projection onto Rn of the solution
set of a linear system

Dw ≤ d
w ∈ Rn+p

if and only if S is a polyhedron.
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If we also allow binary or integer extended variables, then geometric char-
acterizations have been given by Jeroslow and Lowe [8, 9]. A set S ⊆ Rn

is representable as the orthogonal projection onto Rn of the solution set of a
mixed-binary linear system

Dw ≤ d
w ∈ Rn+p × {0, 1}q

if and only if S is the union of a finite number of polyhedra with the same
recession directions.

A set S ⊆ Rn is representable as the orthogonal projection onto Rn of the
solution set of a rational mixed-integer linear system

Dw ≤ d
w ∈ Rn+p × Zq

if and only if S is the union of a finite number of rational polytopes plus the set
of nonnegative integer combinations of finitely many integral vectors.

We are interested in giving representability results for mixed-integer sets
defined not only by linear inequalities, but also by quadratic inequalities of the
form (x−c)>Q(x−c) ≤ γ, where Q is a positive semidefinite matrix. Inequalities
of this type are called ellipsoidal inequalities. More precisely, we say that a set
E ⊆ Rn is an ellipsoidal region in Rn if there exists an n×n matrix Q � 0 (i.e.,
Q is positive semidefinite), a vector c ∈ Rn, and γ ∈ R, such that

E = {x ∈ Rn | (x− c)>Q(x− c) ≤ γ}.

We say that an ellipsoidal region E in Rn is rational if we can take the data
defining E , namely Q, c, and γ to be rational.

Ellipsoidal inequalities arise in many practical applications. As an example,
many real-life quantities are normally distributed; and for a normal distribu-
tion, a natural confidence set, containing the vast majority of the objects, is an
ellipsoidal region. See, e.g., [16] for other applications of ellipsoidal inequalities.

A characterization of sets representable by an arbitrary number of ellipsoidal
inequalities seems to be currently out of reach. We illustrate this difficulty with
a routine example. Consider the set S ⊆ R2 defined as the projection of

{(x1, x2, y) ∈ R3 | x2
1 + x2

2 + y2 ≤ 1, (x1 + y − 1)2 + x2
2 ≤ 1}

onto the space defined by the coordinates (x1, x2). The region S is depicted in
Figure 1.

It can be shown that S is not a basic semialgebraic set. Moreover, the high-
lighted component of the boundary of S is described by the vanishing of a degree
four polynomial. It can be checked that this component of the boundary can-
not be described by any polynomials of degree three or less. Thus, degree four
polynomials are essential to the description of S. These phenomena make it dif-
ficult to obtain complete characterization theorems similar to those of Jeroslow
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Figure 1: The projection of the intersection of two ellipsoidal regions

and Lowe. As a consequence, in this work we will focus on understanding the
expressing power of just one ellipsoidal inequality.

Formally, we say that a set S ⊆ Rn is binary ellipsoidal mixed-integer (binary
EMI) representable if it can be obtained as the orthogonal projection onto Rn

of the solution set of a system of the form

Dw ≤ d
(w − c)>Q(w − c) ≤ γ
w ∈ Rn+p × {0, 1}q,

(1)

where Q is positive semidefinite.
In the general case where extended variables can be mixed-integer, we have

a similar definition. We say that a set S ⊆ Rn is ellipsoidal mixed-integer (EMI)
representable if it can be obtained as the orthogonal projection onto Rn of the
solution set of a system of the form

Dw ≤ d
(w − c)>Q(w − c) ≤ γ
w ∈ Rn+p × Zq,

(2)

where Q is positive semidefinite. We say that a set S ⊆ Rn is rational EMI-
representable if the data D,Q, d, c, γ can be chosen to be rational. We note that
any binary EMI-representable set is EMI-representable.

There is a strong connection between EMI-representable sets and Mixed-
Integer Quadratic Programming (MIQP). In a MIQP problem we aim at min-
imizing a quadratic function over mixed-integer points in a polyhedron. Since
every MIQP with bounded objective admits an optimal solution of polynomial
size (see [3]), any MIQP is equivalent to a polynomial number of MIQP fea-
sibility problems. If the objective quadratic is ellipsoidal, then each feasibility
problem is over a set of the form (2).
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Our main results are the following geometric characterizations of EMI-representable
sets. In the binary case, we have the following theorem which was first presented
in the IPCO version of this paper [4].

Theorem 1. A set S ⊆ Rn is binary EMI-representable if and only if there
exist ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes Pi ⊆ Rn, i = 1, . . . , k,
and a polyhedral cone C ⊆ Rn such that

S =

k⋃
i=1

(Ei ∩ Pi) + C. (3)

In the rational mixed-integer case, we have the following result. Given R ⊆
Rn, we define the integer cone of R to be

int.cone(R) :=
{ t∑

i=1

µir
i
∣∣∣ ri ∈ R, µi ∈ Z≥0, i = 1, . . . , t

}
.

Theorem 2. A set S ⊆ Rn is rational EMI-representable if and only if there
exist rational ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational polytopes Pi ⊆
Rn, i = 1, . . . , k, and integral vectors ri ∈ Zn, i = 1, . . . , t such that

S =

k⋃
i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}. (4)

An example of a binary EMI-representable set is given in Figure 2(a) while
an example of an EMI-representable set is given in Figure 2(b). Note that
the second set is not binary EMI-representable as it is the disjoint union of an
infinite number of convex regions.

(a) A binary EMI-representable set in
R3

-4 -2 0 2 4

-4

-2

0

2

4

…

(b) An EMI-representable set in R2

Figure 2: Examples of EMI-representable sets
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The presence of rational data in Theorem 2 is essential to the development
of a meaningful statement. Even in the pure integer linear case, irrational data
may cause complications. Consider the integer set S = {(x1, x2) ∈ Z2

≥0 | x2 ≤√
2x1}. It is well known that S cannot be represented as the Minkowski sum of

a finite set and the integer cone of a finite number of integral vectors.
Both directions of Theorem 1 and Theorem 2 have geometric implications.

Since each set S of the form (3) or (4) can be obtained as the projection of a
set described by a system (1) or (2) this means that the k ellipsoidal regions Ei
can be expressed with just one ellipsoidal inequality in a higher dimension. We
prove this direction of the theorems by explicitly giving extended formulations
for the sets S.

The other direction of Theorem 1 and Theorem 2 states that the projection
of each system (1) or (2) onto Rn is a set of the form (3) or (4). An important
ingredient of both proofs is showing that the projection of a set

E ∩ P := {w ∈ Rn+1 | Dw ≤ d, (w − c)>Q(w − c) ≤ γ}

onto Rn is a set of the form (3). In order to do so, we introduce the key concept of
a shadowing hyperplane. This hyperplane allows us to split the ellipsoidal region
into two ‘parts’. In turn, this allows us to compute the projection of E ∩ P by
computing a finite number of projections of E intersected with a hyperplane.
This will show that the projection of E ∩ P is the union of a finite number of
regions that are the intersection of a polyhedron and one nonlinear inequality,
which we will prove to be ellipsoidal.

The remainder of this paper is organized as follows. In Section 2, we provide
a number of results relating to the intersection of an ellipsoidal region with a
polyhedron and the projections of such regions. In Section 3, we prove our main
results Theorem 1 and Theorem 2.

Notation. In the remainder of the paper we will use the following notation.
Given a set E ⊆ Rn × Rp and a vector ȳ ∈ Rp, we define the ȳ-restriction of E
as

E|y=ȳ = {x ∈ Rn | (x, ȳ) ∈ E}.

Note that E|y=ȳ geometrically consists of the intersection of E with coordinate
hyperplanes. Sometimes we will need to consider E|y=ȳ in the original space
Rn × Rp, thus we also define

Ẽ|y=ȳ = {(x, ȳ) ∈ Rn × Rp | (x, ȳ) ∈ E}.

We may also need to fix a subset of the y-coordinates y1 = ȳ1, . . . , yk = ȳk at
one time. In such a case we simply write E|y1=ȳ1,...,yk=ȳk

and Ẽ|y1=ȳ1,...,yk=ȳk
.

Given a set E ⊆ Rn, and a positive integer k ≤ n, we will denote by projk(E)
the orthogonal projection of E onto its first k coordinates. Formally,

projk(E) = {x ∈ Rk | ∃y ∈ Rn−k with (x, y) ∈ E}.
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We note that projk : Rn → Rk is a linear transformation, and thus respects
vector addition, i.e., Minkowski sums. We also denote by span(E) the linear
space generated by E and by cone(E) the cone generated by E.

Given a nonempty convex set E ⊆ Rn we denote by rec(E) the recession
cone of E, namely the set of vectors r ∈ Rn such that for any λ > 0 and x ∈ E
we have x+λr ∈ E. We note that nearly all of the sets we consider in this paper
are closed, in which case rec(E) coincides with the set of recession directions at
any point of E, see Theorem 8.3 in [13]. We also denote by lin(E) the lineality
space of E.

Given a matrix A we denote by range(A) the range of A and by ker(A) the
kernel of A. If A is positive semidefinite, we write A � 0. This implies that A
is symmetric.

2 Ellipsoidal Regions and Hyperplanes

In this section we formally define ellipsoidal regions. These regions will appear
throughout our study of representability. We will prove a few results on the
intersection of ellipsoidal regions with half-spaces as well as their projections.
These results will be necessary for our proofs of Theorem 1 and Theorem 2.

We say that a set E is an ellipsoidal region in Rn if there exists an n × n
matrix Q � 0, a vector c ∈ Rn, and γ ∈ R, such that

E = {x ∈ Rn | (x− c)>Q(x− c) ≤ γ}.

We note that if Q � 0 (i.e., Q is positive definite) and γ > 0, then E is an
ellipsoid, i.e., the image of the unit ball B = {x ∈ Rn | ||x||2 ≤ 1} under an
invertible affine transformation.

The following observation is well-known, and we give a proof for complete-
ness.

Observation 1. Let q(x) = x>Qx + b>x be a quadratic function on Rn with
Q a positive semidefinite matrix. Then q(x) has a minimum on Rn if and only
if b is in the range of Q.

Proof. Assume b /∈ range(Q). Then since Q is symmetric, we can write b =
Qr+ c with Qc = 0 and c 6= 0. Consider the line x(t) = −tc for t ∈ R. Then we
have

q(x(t)) = b>x(t) = −tc>c.

Since c 6= 0, we see that q(x(t))→ −∞ as t→ +∞. Thus, q(x) has no minimum
on Rn.

Assume there exists r ∈ Rn such that 1
2b = Qr. Then

q(x) = (x+ r)>Q(x+ r)− r>Qr

and q(x) has a minimum at any x̄ such that x̄ + r ∈ ker(Q). In particular, −r
is a minimizer and q(−r) = −r>Qr is the optimal value.
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The following lemma shows that ellipsoidal regions are closed under inter-
sections with coordinate hyperplanes. This is equivalent to fixing a number of
variables.

Lemma 1. Let E be an ellipsoidal region in Rn × Rp. Then for any ȳ ∈ Rp,
the set E|y=ȳ is an ellipsoidal region in Rn.

Proof. Let E = {(x, y) ∈ Rn × Rp | q(x, y) ≤ γ}, where q(x, y) is the quadratic
polynomial

q(x, y) =

(
x− c
y − c′

)>(
Q R
R> Q′

)(
x− c
y − c′

)
.

For any fixed ȳ ∈ Rp, since Q is positive semidefinite it suffices to show there
exists cȳ ∈ Rn and γȳ ∈ R such that

E|y=ȳ = {x ∈ Rn | (x− cȳ)>Q(x− cȳ) ≤ γȳ}. (5)

Let ȳ ∈ Rp. Since q(x, y) has a minimum on Rn × Rp by Observation 1, the
quadratic function

q(x, ȳ) = (x− c)>Q(x− c) + 2(ȳ − c′)>R>(x− c) + (ȳ − c′)>Q′(ȳ − c′),

has a minimum on Rn as it is bounded from below. By Observation 1, R(ȳ−c′) ∈
range(Q), and so there exists x̄ ∈ Rn such that Qx̄ = R(ȳ − c′). Then (5) is
satisfied with cȳ := c− x̄ and γȳ := γ + x̄>Qx̄− (ȳ − c′)>Q′(ȳ − c′).

We now provide a lemma that describes the recession cone of a nonempty
ellipsoidal region.

Lemma 2. Let E = {x ∈ Rn | (x− c)>Q(x− c) ≤ γ} be a nonempty ellipsoidal
region in Rn. Then

rec(E) = ker(Q) = {x ∈ Rn | x>Qx = 0}.

Proof. We first show that rec(E) = ker(Q). Since E is a closed convex set,
rec(E) is equal to the set of recession directions from any point x ∈ E . Consider
the point c ∈ E . Then for any r ∈ ker(Q) and λ > 0 we have c + λr ∈ E
since λ2r>Qr = 0 ≤ γ. Thus, r ∈ rec(E). Assume now that r ∈ rec(E). Let
Q = L>L be a Cholesky decomposition of Q. Then for any λ > 0 we have
λ2r>Qr = λ2||Lr||2 ≤ γ, which implies Lr = 0 and r ∈ ker(Q). Next we show
that ker(Q) = {x ∈ Rn | x>Qx = 0}. Clearly, the kernel is contained in the
right hand side. Suppose r ∈ Rn satisfies r>Qr = 0. Replacing Q with its
Cholesky decomposition, we see that ||Lr||2 = 0. This implies Lr = 0, and thus
r ∈ ker(Q).

We are now ready to provide a geometric description of ellipsoidal regions.
A consequence of this description is that any non-empty ellipsoidal region may
be decomposed as the Minkowski sum of an ellipsoid and a linear space.

Lemma 3. Let E be an ellipsoidal region in Rn. Then
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(i) E = ∅, or

(ii) E is an affine space, or

(iii) There exists an integer k ∈ {0, . . . , n − 1}, a k-dimensional linear space
L ⊆ Rn, and k distinct indices i1, . . . , ik ∈ {1, . . . , n} such that the re-
striction

E|xi1
=x̄i1

,...,xik
=x̄ik

is an ellipsoid in Rn−k, and

E = Ẽ |xi1
=x̄i1

,...,xik
=x̄ik

+ L.

Proof. Let E = {x ∈ Rn | (x−c)>Q(x−c) ≤ γ} whereQ is a positive semidefinite
matrix. If γ < 0, then E = ∅ since Q is positive semidefinite. Thus, we may
assume that γ ≥ 0 and E is non-empty.

Now assume γ = 0. By Lemma 2, x ∈ E if and only if x ∈ c+ ker(Q). Thus
E = c+ ker(Q) is an affine space.

Assume now γ > 0. If Q is invertible then E is an ellipsoid and we are
done, in this case k = 0. Thus, we may assume L := ker(Q) is nontrivial. Let
k = dim(L) and L = {l1, . . . , lk} be a basis for L. Note if k = n then E = Rn,
an affine space, and we are done. Thus, we may assume that k < n. Extend L
to a basis L′ of Rn by adding a subset of the standard basis vectors {e1, . . . , en}
of Rn. Let J ⊆ {1, . . . , n} be the set of indices j for which ej ∈ L′ − L, and
suppose {i1, . . . , ik} = {1, . . . , n} − J . Define

E ′ := E|xi1
=0,...,xik

=0 and Ẽ ′ := Ẽ |xi1
=0,...,xik

=0.

We now show E = Ẽ ′ + L. Since Ẽ ′ ⊆ E and rec(E) = L, we clearly have
Ẽ ′ + L ⊆ E . Let v ∈ E . Expanding v in the basis L′, we have for some
l ∈ L and scalars αj ∈ R, that v = l +

∑
j∈J αjej . Since L = rec(E) we have

v − l =
∑

j∈J αjej ∈ E ′ and E ⊆ Ẽ ′ + L.

By Lemma 1, E ′ is an ellipsoidal region in Rn−k. Note first that E is full-
dimensional in Rn, i.e., has n+1 affinely independent vectors. This is immediate
since γ > 0 and there exists a vector, namely c ∈ Rn, for which the continuous
function (x − c)>Q(x − c) has value 0. If E ′ is unbounded, then E ′ has some
recession direction outside of L which contradicts the fact that rec(E) = L.
Moreover, since E ′ is bounded it follows from Lemma 2 that the matrix defining
E ′ is invertible, and thus positive definite. Then E ′ is either an ellipsoid or a
single point. Since E = Ẽ ′ + L is full dimensional, and dim(L) = k < n, E ′
cannot be a single point.

We make the following remark about the proof of (iii) that will be used later.
If one of the standard basis vectors of Rn, say en, is not contained in L, then
we may assume that xn does not occur among the fixed variables xi1 , . . . , xik .
To see this, note that in completing the basis L of L to a basis of Rn we may
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first add the standard basis vector en to the set L. In general, it is not possible
to complete this procedure for more than one of the ej /∈ L simultaneously.

It can be shown that an appropriate converse of Lemma 3 holds. This
provides a complete geometric characterization of ellipsoidal regions. We use
Lemma 3 to make the following observation that distinguishes ellipsoidal regions
from general convex quadratic regions.

Observation 2. Let E be a nonempty ellipsoidal region in Rn. Then there
exists a polyhedron B ⊆ Rn such that E ⊆ B and rec(B) = rec(E).

Proof. By Lemma 3, E is either an affine space, or the Minkowski sum of an
ellipsoid and a linear space. Since affine spaces are polyhedral, it suffices to
assume that E = Ẽ |xi1

=x̄i1
,··· ,xik

=x̄ik
+ L for an ellipsoid E|xi1

=x̄i1
,··· ,xik

=x̄ik
in

Rn−k and a linear space L. Since Ẽ |xi1
=x̄i1

,··· ,xik
=x̄ik

is a bounded set there

exists a polytope B̃ such that Ẽ |xi1=x̄i1 ,··· ,xik
=x̄ik

⊆ B̃. Then the polyhedron

defined by B := B̃ + L has the desired properties.

The next observation gives a description of the recession cones that will be
encountered in this paper.

Observation 3. Let P be a polyhedron and E an ellipsoidal region in Rn.
Assume that E ∩ P 6= ∅. Then rec(E ∩ P) is a polyhedral cone.

Proof. We note that by Corollary 8.3.3 in [13] we have that rec(E∩P) = rec(E)∩
rec(P). The set rec(P) is a polyhedral cone (see, e.g., [14]), and rec(E) is a linear
space by Lemma 2. As a consequence rec(E ∩ P) is a polyhedral cone.

The following lemma shows that to compute the projection of an ellipsoidal
region E in Rn, it suffices to consider the projection of E ∩ H for a specific
hyperplane H ⊆ Rn. We will refer to such a hyperplane H as a shadowing
hyperplane, as it contains enough information to completely describe the pro-
jection, or ‘shadow’, of E . See Figure 3 for an illustration.

-4 -2 0 2 4
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projn−1(E)

E
H

Figure 3: Illustration of a shadowing hyperplane
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Lemma 4. Let E be an ellipsoidal region in Rn. Then there exists a hyperplane
H ⊆ Rn with en /∈ lin(H) such that

projn−1(E) = projn−1(E ∩H).

Proof. If E = ∅ the statement follows immediately. We assume then that E 6= ∅.
It clearly suffices to show that projn−1(E) ⊆ projn−1(E ∩H). Let E be described
by the ellipsoidal inequality q(x) = (x − c)>Q(x − c) ≤ γ. We note that this
inequality can be rearranged to q(x) = x>Qx + b>x + d ≤ 0 for a specific
vector b ∈ range(Q) and scalar d ∈ R. Split the variable x into two pieces
(x′, xn) ∈ Rn−1 × R and write

Q =

(
Q′ l
l> a

)
for an (n− 1)× (n− 1) matrix Q′ � 0 and scalar a ≥ 0. After replacing b with
(b′, bn) we can write

q(x′, xn) = ax2
n + (2l>x′ + bn)xn + x′>Q′x′ + b′>x′ + d ≤ 0.

Assume first that a = 0. Then en ∈ ker(Q) since Q � 0. We claim that
the hyperplane H = {x ∈ Rn | xn = 0} has the desired property. For any
x̄ ∈ projn−1(E), there exists λ such that (x̄, λ) ∈ E . Now by Lemma 2 we have
±en ∈ rec(E). Then (x̄, 0) ∈ E ∩H which implies x̄ ∈ projn−1(E ∩H).

Assume now that a > 0. We claim that the hyperplaneH = {x ∈ Rn | 2axn+
2l>x′ = −bn} has the desired property. Let x̄ ∈ projn−1(E). Then the univariate
polynomial q(x̄, xn) has real roots since x̄ ∈ projn(E) and a > 0. It follows from
the quadratic formula that the midpoint on the line segment between the two
roots say (x̄, λ) is in both E and H.

We refer to the hyperplane H defined in Lemma 4 as the shadowing hyper-
plane of E . The following proposition will be one of the main building blocks
of both Theorem 1 and Theorem 2. It provides a geometric description of the
projection of the intersection of an ellipsoidal region and a polyhedron.

Proposition 1. Let E ⊆ Rn+p be a nonempty ellipsoidal region and P ⊆ Rn+p

be a nonempty polyhedron. Let S = projn(E ∩ P). Then there exist ellipsoidal
regions Ei ⊆ Rn, i = 1, . . . , k, polytopes Pi ⊆ Rn, i = 1, . . . , k, and a polyhedral
cone C ⊆ Rn such that

S =

k⋃
i=1

(Ei ∩ Pi) + C,

where C = projn(rec(E) ∩ rec(P)).

Proof. In the case that E ∩ P = ∅, the statement follows immediately. We may
now assume that E ∩ P 6= ∅. In the first two claims we prove that it suffices to
show that S has an equivalent, but simpler, decomposition.
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Claim 1. It suffices to find ellipsoidal regions Ei ⊆ Rn, polytopes Pi ⊆ Rn,
and polyhedral cones Ci ⊆ Rn, for i = 1, . . . , k, that satisfy

S =

k⋃
i=1

(Ei ∩ Pi + Ci). (6)

Proof of claim. We first show that rec(S) = projn(rec(E) ∩ rec(P)), which by
Observation 3 is a polyhedral cone. By definition, rec(S) = rec(projn(E ∩ P)).
Then since the projection of a ray in E ∩ P is a ray in S, the containment of
projn(rec(E) ∩ rec(P)) in rec(S) is clear. Let r ∈ rec(projn(E ∩ P)). Consider
a polyhedral approximation B of E as in Observation 2 such that B ⊆ Rn+p is
a polyhedron, E ⊆ B and rec(E) = rec(B). Then clearly, r ∈ rec(projn(B ∩ P))
and since B ∩ P is a polyhedron it is well known that rec(projn(B ∩ P)) =
projn(rec(B∩P)). Then by construction, rec(B∩P) = rec(B)∩rec(P) = rec(E)∩
rec(P). Henceforth, we denote by C the polyhedral cone rec(S).

Assume we have Ei,Pi, and Ci that satisfy (6). Since C = rec(S), for each
i = 1, . . . , k we have that Ci must be contained in C. It follows that

S = S + C =

k⋃
i=1

(Ei ∩ Pi + Ci) + C =

k⋃
i=1

(Ei ∩ Pi) + C. �

Claim 2. It suffices to find ellipsoidal regions Ei ⊆ Rn, polyhedra Pi ⊆ Rn,
for i = 1, . . . , k, that satisfy

S =

k⋃
i=1

(Ei ∩ Pi). (7)

Proof of claim. Assume we have ellipsoidal regions Ei and nonempty polyhedra
Pi that satisfy (7). Without loss of generality, we may assume that all of the Ei
are nonempty. Consider a polyhedral approximation Bi of Ei as in Observation 2
such that Bi ⊆ Rn is a polyhedron, Ei ⊆ Bi, and rec(Ei) = rec(Bi). Then Bi∩Pi

is a polyhedron and by the Minkowki-Weyl theorem can be decomposed as
Ri+Ci for a polytope Ri and a polyhedral cone Ci. We claim that Ei∩Ri+Ci =
Ei ∩ Pi.

Let x ∈ Ei ∩ Ri + Ci. Note that Ri + Ci ⊆ Pi so that x ∈ Pi and since
Ci ⊆ rec(Ei), we have x ∈ Ei as well. Thus, Ei∩Ri+Ci ⊆ Ei∩Pi. Let x ∈ Ei∩Pi.
Then x ∈ Bi∩Pi = Ri +Ci and we may write x = r+ c for some r ∈ Ri, c ∈ Ci.
Note that c ∈ rec(Ei), and since rec(Ei) is a linear space by Lemma 3, we obtain
−c ∈ rec(Ei) as well. Then x = (x − c) + c and x − c = r ∈ Ei ∩ Ri, c ∈ Ci so
x ∈ Ei ∩Ri + Ci. �

Claim 3. We can assume without loss of generality p = 1.

Proof of claim. Let E ∩ P ⊆ Rn+p. We prove that S = projn(E ∩ P) has the
desired decomposition (7), by induction on p. For this claim, we assume the
base case, p = 1. Now let p = m, and suppose the statement holds for p < m.
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Given E ∩ P ⊆ Rn+m, by the base case p = 1 there exist ellipsoidal regions E ′i
and polyhedra P ′i such that

projn+m−1(E ∩ P) =

t⋃
i=1

(E ′i ∩ P ′i).

Since the projection of a union is the union of the projections, we have

S = projn(projn+m−1(E ∩ P)) =

t⋃
i=1

projn(E ′i ∩ P ′i).

Then by the induction hypothesis there exists ellipsoidal regions E ′i,j and poly-
hedra P ′i,j such that

S =

t⋃
i=1

( ti⋃
j=1

E ′i,j ∩ P ′i,j
)
,

and we are done. �

To prove Proposition 1 it remains to show the following. Assume we are
given E ∩P ⊆ Rn+1. We must show the existence of ellipsoidal regions Ei ⊆ Rn,
and polyhedra Pi ⊆ Rn, for i = 1, . . . , k, that satisfy (7).

Given a half-space H+ = {x ∈ Rn | a>x ≥ b}, we write H for the hyperplane
{x ∈ Rn | a>x = b} and H− for the half-space {x ∈ Rn | a>x ≤ b}. A
polyhedron is the intersection of finitely many half-spaces. Thus, there exist
half-spaces H+

1 , . . . ,H
+
s ⊆ Rn+1 such that P = ∩si=1H

+
i .

We will define a collection H of hyperplanes that will allow us to compute
projn(E ∩ P). By Lemma 4, there exists a hyperplane H0 ⊂ Rn+1 with en+1 /∈
lin(H0) such that projn(E) = projn(E ∩ H0). We arbitrarily pick one closed
half-space defined by H0 to be H+

0 and the other to be H−0 . Then

E ∩ P = (E ∩H+
0 ∩si=1 H

+
i ) ∪ (E ∩H−0 ∩si=1 H

+
i ),

and it suffices to show the existence of ellipsoidal regions and polyhedra satisfy-
ing (7) for one of the regions E ∩H+

0 ∩si=1H
+
i or E ∩H−0 ∩si=1H

+
i . By symmetry,

we show this existence for E ∩H+
0 ∩si=1 H

+
i . Let

H :=
{
Hi

∣∣∣ i ∈ {1, . . . , s}, en+1 /∈ lin(Hi)
}
∪
{
H0

}
.

Claim 4. We have

projn(E ∩si=0 H
+
i ) =

⋃
H∈H

projn(E ∩H ∩si=0 H
+
i ).

Proof of claim. The right hand side is clearly contained in the left hand side, so
it suffices to show the forward containment. It suffices to show that E ∩si=0 H

+
i

has the following property: for any x ∈ E ∩si=0 H
+
i there exists a hyperplane

H ∈ H and a λ ∈ R such that x+ λen+1 ∈ E ∩H ∩si=0 H
+
i .

12



Let x̄ ∈ E ∩si=0 H
+
i . To prove the claim, we show that we can translate x̄

along ±en+1, and inside the feasible region, until it meets a half-space in H

at equality. By the existence of the shadowing hyperplane H0, there is one
direction among ±en+1 along which x̄ may be translated to intersect H0 while
staying inside E . That is, there exists λ̄ ∈ R such that x̄+λ̄en+1 ∈ E∩H0. Then,
there exists a possibly different λ′ ∈ R with the same sign as λ̄ and |λ′| ≤ |λ̄|
such that x̄+λ′en+1 ∈ E ∩si=0H

+
i and x̄+λ′en+1 lies on at least one hyperplane

H ∈ H. �

Now it suffices to show that for any H ∈ H there exists an ellipsoidal region
E ′ ⊆ Rn and a polyhedron P ′ ⊆ Rn such that

projn(E ∩H ∩si=0 H
+
i ) = E ′ ∩ P ′.

Without loss of generality, we may assume that Hi∩H 6= ∅ for each i = 0, . . . , s.
If not, say Hi ∩ H = ∅ for some i ∈ {0, . . . , s}, i.e., the hyperplanes Hi and
H are parallel. Then either E ∩ H ∩ H+

i = ∅ and our region is empty, or
E ∩H ∩H+

i = E ∩H and H+
i is redundant and may be removed.

We now show that each half-space H+
i for i ∈ {0, . . . , s}, with Hi different

from H, can be replaced with a different half-space M+
i such that E ∩H∩H+

i =
E ∩H ∩M+

i and en+1 ∈ lin(M+
i ). Fix i such that i ∈ {0, . . . , s} and Hi 6= H.

Let Mi := H ∩ Hi + span(en+1). Since en+1 /∈ lin(H), we have that Mi is a
hyperplane in Rn+1 that divides H into the same two regions that Hi does. In
particular, upon choice of direction, we have that M+

i has the desired properties.
We are now ready to describe the polyhedron P ′. First, remove from the

intersection E ∩H ∩si=0 H
+
i any redundant H+

i and the H+
i such that Hi = H.

Then upon relabeling we may rewrite E ∩H∩si=0H
+
i as E ∩H∩s′i=0H

+
i . We may

now replace each H+
i with M+

i . By the requirement en+1 ∈ lin(M+
i ), we have

that each M+
i is defined by a linear inequality with the coefficient of xn+1 equal

to 0. Thus, the projection projn(M+
i ) is a half-space in Rn which we denote

H̄+
i . Further, if each H+

i for i = 0, . . . , s′ is replaced in this way, we have

projn(E ∩H ∩s
′

i=0 H
+
i ) = projn(E ∩H ∩s

′

i=0 M
+
i ) = projn(E ∩H) ∩s

′

i=0 H̄
+
i ,

and we have the desired polyhedron P ′ := ∩s′i=0H̄
+
i .

It remains to show that projn(E ∩H) is an ellipsoidal region E ′ ⊆ Rn. Let
H = {(x, y) ∈ Rn × R | a>(x, y) = b}. Consider the linear transformation from
Rn+1 to itself, defined by the matrix A whose first n rows are the first n standard
unit vectors of Rn+1 and whose last row is a. Note that A is invertible since
en+1 is not in lin(H), i.e., an+1 6= 0. Then, by the definition of A, for any
vector (x, y) ∈ Rn+1 we have A(x, y) = (x, c) where c = a>(x, y). It follows
that A(H) gets mapped to the hyperplane {(x, y) ∈ Rn+1 | y = b}. Now, since
A is invertible we have

x ∈ projn(E ∩H)⇔ ∃y ∈ R such that (x, y) ∈ E ∩H
⇔ (x, b) ∈ A(E ∩H)

⇔ (x, b) ∈ A(E).
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This shows that projn(E ∩H) = A(E)|y=b. Ellipsoidal regions are clearly pre-
served under invertible linear transformations, therefore A(E) is an ellipsoidal
region. Finally, by Lemma 1, the set A(E)|y=b is an ellipsoidal region. This
concludes the proof that projn(E ∩H) is an ellipsoidal region E ′.

We remark that all of the statements in this section behave nicely with re-
spect to rationality. In greater detail, if the given ellipsoidal regions, polyhedra,
and vectors are rational, then the resulting objects are also all rational. This
observation can be seen directly from the proofs of these results. In particular,
the rational version of Proposition 1 has the following statement.

Proposition 2. Let E ⊆ Rn+p be a nonempty rational ellipsoidal region and
P ⊆ Rn+p be a nonempty rational polyhedron. Let S = projn(E ∩ P). Then
there exist rational ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational polytopes
Pi ⊆ Rn, i = 1, . . . , k, and a rational polyhedral cone C ⊆ Rn such that

S =

k⋃
i=1

(Ei ∩ Pi) + C,

where C = projn(rec(E) ∩ rec(P)).

3 Proofs of main results

We begin this section with a proposition that establishes the sufficiency of the
conditions given in Theorem 1.

Proposition 3. Let Ei ⊆ Rn, i = 1, . . . , k be ellipsoidal regions, Pi ⊆ Rn, i =
1, . . . k, be polytopes and C ⊆ Rn a polyhedral cone. Suppose

S =

k⋃
i=1

(Ei ∩ Pi) + C.

Then S is binary EMI-representable.

Proof. Assume that we are given a set

S =

k⋃
i=1

(Ei ∩ Pi) + C,

where Ei = {x ∈ Rn | (x−ci)>Qi(x−ci) ≤ γi} are ellipsoidal regions, Pi = {x ∈
Rn | Aix ≤ bi} are polytopes, and C = cone{r1, . . . , rt} ⊆ Rn is a polyhedral
cone. For each ellipsoidal region Ei, if γi > 0 we can normalize the right hand
side of the inequality to 1. Else, either γi < 0 and Ei is empty or γi = 0 and Ei
is an affine space. In the case, that Ei is an affine space, we may set γi = 1 and
add the linear equalities defining Ei to the system Aix ≤ bi defining Pi. Thus,
we may assume γi = 1 for all i = 1, . . . , k.
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We introduce new continuous variables xi ∈ Rn and binary variables δi ∈
{0, 1}, for i = 1, . . . , k, that will model the individual regions Ei ∩Pi + C. Then
S can be described as the set of x ∈ Rn such that

x =

k∑
i=1

(xi + δici) +

t∑
j=1

λjr
j

Aix
i ≤ δi(bi −Aici) i = 1, . . . , k

k∑
i=1

δi = 1


x1

x2

...
xk


>

Q1

Q2

. . .

Qk



x1

x2

...
xk

 ≤ 1

xi ∈ Rn, δi ∈ {0, 1} i = 1, . . . , k

λj ∈ R≥0 j = 1, . . . , t.

Now if δ1 = 1 the remaining δi must be 0. Then for each xi with i 6= 1, we have
the constraint Aix

i ≤ 0 which has the single feasible point xi = 0 since Pi is a
polytope. The remaining constraints reduce to

x = x1 + c1 +

t∑
j=1

λjr
j

A1(x1 + c1) ≤ b1
(x1)>Q1x

1 ≤ 1

x1 ∈ Rn

λj ∈ R≥0 j = 1, . . . , t.

By employing a change of variables x′ = x1 + c1, it can be checked that the
latter system describes the region E1 ∩ P1 + C. The remaining regions follow
symmetrically. Therefore S is binary EMI-representable.

A similar proposition holds that proves sufficiency of the conditions given in
Theorem 2.

Proposition 4. Let Ei ⊆ Rn, i = 1, . . . , k be rational ellipsoidal regions, Pi ⊆
Rn, i = 1, . . . k, be rational polytopes and ri ∈ Zn, i = 1, . . . , t be integral vectors.
Suppose

S =

k⋃
i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}.

Then S is rational EMI-representable.

15



The proof of Proposition 4 is identical to the proof of Proposition 3 except
that the constraints λj ∈ R≥0 are replaced with λj ∈ Z≥0 and the binary
constraints δi ∈ {0, 1} are replaced with 0 ≤ δi ≤ 1 and δi ∈ Z.

We are now ready to prove the two main theorems.

Proof of Theorem 1 Sufficiency of the conditions follows by Proposition 3. The
remainder of the proof is devoted to proving necessity of the condition. We are
given an ellipsoidal region E and a polyhedron P in Rn+p+q, and we define

S̄ := E ∩ P ∩ (Rn+p × {0, 1}q),

S := projn(S̄).

We may assume S̄ 6= ∅, else the statement follows immediately. We must show
the existence of ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, polytopes Pi ⊆ Rn,
i = 1, . . . , k, and a polyhedral cone C ⊆ Rn such that

S =

k⋃
i=1

(Ei ∩ Pi) + C.

Let T be the subset of {0, 1}q such that z̄ ∈ T if and only if S̄|z=z̄ 6= ∅.
It follows that S =

⋃
z̄∈T projn(S̄|z=z̄). Let z̄ ∈ T . Then S̄|z=z̄ = E|z=z̄ ∩

P|z=z̄. It is well known that rec(P|z=z̄) is independent of choice of z̄ ∈ T .
Moreover, it follows from (5) in Lemma 1 and from Lemma 2 that rec(E|z=z̄) is
also independent of choice of z̄ ∈ T .

We can now apply Proposition 1 and observe that

S =
⋃
z̄∈T

( ⋃
i∈Iz̄

Ei ∩ Pi + C
)
,

where C is a polyhedral cone independent of the choice of z̄ ∈ T . Now for any
sets A1, . . . , At, B ⊆ Rn, it can be checked that the Minkowski sum satisfies the
relation

t⋃
i=1

(Ai +B) = (

t⋃
i=1

Ai) +B.

It follows that
S =

⋃
z̄∈T

⋃
i∈Iz̄

(Ei ∩ Pi) + C.

Since each of the sets Iz̄ are finite, this completes the proof of Theorem 1.

Proof of Theorem 2 Sufficiency of the conditions follows by Proposition 4. The
remainder of the proof is devoted to proving necessity of the condition. We are
given a rational ellipsoidal region E and a rational polyhedron P in Rn+p+q,
and we define

S̄ := E ∩ P ∩ (Rn+p × Zq),

S := projn(S̄).
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We may assume S̄ 6= ∅, else the statement follows immediately. We must show
the existence of rational ellipsoidal regions Ei ⊆ Rn, i = 1, . . . , k, rational poly-
topes Pi ⊆ Rn, i = 1, . . . , k, and integral vectors r1, . . . , rt ∈ Zn such that

S =

k⋃
i=1

(Ei ∩ Pi) + int.cone{r1, . . . , rt}.

We first show that we can decompose S̄ into a bounded region and an integer
cone.

Claim 1. There exists a rational polytope R ⊆ Rn+p+q and integral vectors
r1, . . . , rt ∈ Zn+p+q such that

S̄ = E ∩ R ∩ (Rn+p × Zq) + int.cone{r1, . . . , rt}.

Proof of claim. Let B ⊆ Rn+p+q be a rational polyhedral approximation of E
as in Observation 2 such that B is a rational polyhedron, E ⊆ B, and rec(E) =
rec(B). Then E ∩ P = E ∩ (B ∩ P). Since B ∩ P is a rational polyhedron, we
can decompose B ∩ P = R′ + C for some rational polytope R′ and a rational
polyhedral cone C. Since C is rational, there exist integral vectors r1, . . . , rt ∈
Zn+p+q such that C = cone{r1, . . . , rt}. Note that each ri ∈ rec(E). Let

R := R′ +
{ t∑

i=1

λir
i
∣∣∣ 0 ≤ λi ≤ 1 for each i = 1, . . . , t

}
.

It is well-known that B∩P = R′+C = R+int.cone{r1, . . . , rt}, see for example
the proof of Theorem 4.30 in [1].

We now show that R meets the conditions of the claim. Let p ∈ S̄. Then
p ∈ B∩P so p = q+

∑t
i=1 µir

i for some q ∈ R and µi ∈ Z≥0. Since p ∈ Rn+p×Zq

and µi, r
i are integral, we have q ∈ Rn+p×Zq. Moreover, q ∈ E since p ∈ E and

rec(E) is a linear space and each ri ∈ rec(E). Thus, S̄ ⊆ E ∩R∩ (Rn+p ×Zq) +
int.cone{r1, . . . , rt}.

For the reverse inclusion, let q ∈ E ∩ R ∩ (Rn+p × Zq) and µi ∈ Z≥0 for

i = 1, . . . , t. Let p = q+
∑t

i=1 µir
i. Since q ∈ Rn+p×Zq and µi, r

i are integral,
we have p ∈ Rn+p×Zq. Also, each ri ∈ rec(E) which implies that p ∈ E . Finally,
p ∈ R+ C = B ∩ P ⊆ P which implies p ∈ P. Therefore, p ∈ S̄. �

Let r̄1, . . . , r̄t ∈ Zn be the vectors consisting of the first n components of
r1, . . . , rt. Then by linearity of the projection operator, we have

S = projn(E ∩ R ∩ (Rn+p × Zq)) + int.cone{r̄1, . . . , r̄t}.

Let S̄′ := E ∩ R ∩ (Rn+p × Zq). Let T be the subset of Zq such that z̄ ∈ T if
and only if S̄′|z=z̄ 6= ∅ and note that T is finite, since R is a polytope. It follows
that

S =
⋃
z̄∈T

projn(S̄′|z=z̄) + int.cone{r̄1, . . . , r̄t}.
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Let z̄ ∈ T . Then S̄′|z=z̄ = E|z=z̄ ∩R|z=z̄. We can now apply Proposition 2 and
observe that

S =
⋃
z̄∈T

⋃
i∈Iz̄

(Ei ∩ Pi) + int.cone{r̄1, . . . , r̄t}.

Note that since each R|z=z̄ is a polytope, there is no cone C. Since each of the
sets Iz̄ are finite, this completes the proof of Theorem 2
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